
会员
智能机器人制作完全手册
《无线电》编辑部更新时间:2019-07-26 10:25:56
最新章节:后记开会员,本书免费读 >
本书汇集了多位创客在智能机器人方面的丰硕成果,不仅为刚接触机器人制作的初学者提供了从单片机、传感器选择到零件设计、组装过程的详尽入门教程,覆盖机器人小车、多足机器人、人形机器人等不同类型,实现遥控、自平衡、语音控制、智能交互等不同功能的丰富实例。通过阅读这本书,你会全面了解智能机器人的构成,在设计与制作智能机器人方面获得思路和灵感。
品牌:人邮图书
上架时间:2015-08-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
《无线电》编辑部
主页
最新上架
- 会员
这就是DeepSeek:普通人如何抓住AI红利
本书聚焦如何高效运用DeepSeek这一前沿AI工具,帮助读者在技术浪潮中把握机遇。全书从DeepSeek发展历程切入,系统解析DeepSeek在信息处理、创意生成与决策辅助中的核心能力,并结合生活管理、职场协作、学习优化、社交互动等场景,通过真实案例讲解其应用方法。同时,针对内容创作、自媒体运营、副业变现等需求,书中提供了可落地的策略与案例,助力读者实现效率提升与价值创造。书中不仅提供技术使用技计算机5.5万字 - 会员
秒懂AI辅助论文写作
本书是一本深入探讨AI在论文写作中应用的指南。本书通过九章内容,全面介绍如何在论文选题、前言写作、大纲写作、正文写作、数据分析、摘要写作、结语撰写、文稿翻译与润色、答辩PPT制作、查重投稿等环节借助AI提高效率和质量。本书不仅讨论了AI的使用伦理,还针对论文写作的具体问题,提供了提示词示例(已全部收录到秋叶AI智能鼠标平台),为论文写作提供了广阔的视角和新的方法。本书可作为缺少学术论文写作经验的大计算机7.3万字 - 会员
AI虚拟仿真从入门到参赛
本书全面探讨人工智能三维仿真竞赛,包括竞赛的立意、类型和流程,并详细介绍人工智能三维仿真软件的核心功能,如编程、控制、循迹、定位等的应用。本书首先介绍人工智能三维仿真竞赛的基础知识,为读者打下坚实的理论基础;其次转向人工智能三维仿真软件的详细教学,通过具体案例强化读者的学习效果;最后总结人工智能三维仿真竞赛中的常见任务类型,并结合历史竞赛案例,为读者提供实际参考。本书适合准备参加人工智能三维仿真竞计算机4.4万字 - 会员
大模型应用开发:核心技术与领域实践
本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大计算机12.3万字 - 会员
硅基物语·AI大爆炸:ChatGPT→AIGC→GPT-X→AGI进化→魔法时代→人类未来
本书以第一人称视角,讲述AI的来龙去脉,表达AI的技术原理。从历史到未来,跨越百年时空;从理论到实践,解读AI大爆炸;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。ChatGPT的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及大模型、深度神经网络、Transformer、AIGC、涌现效应等一系列技术前沿。计算机8.6万字 - 会员
设计深度学习系统
本书主要从软件开发者的角度探讨如何构建和设计深度学习系统。作者首先描述一个典型的深度学习系统的整体,包括其主要组件以及它们之间的连接方式,然后在各个单独的章节中深入探讨这些主要组件。对于具体介绍的章节,会在开始时讨论需求,接着介绍设计原则和示例服务/代码,并评估开源解决方案。通过阅读本书,读者将能够了解深度学习系统的工作原理,以及如何开发每个组件。本书的主要读者对象是想要从事深度学习平台工作或将一计算机18.1万字 - 会员
用ChatGPT轻松玩转机器学习与深度学习
本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。计算机18万字 - 会员
AI时代架构师修炼之道:ChatGPT让架构师插上翅膀
本书以ChatGPT为核心工具,揭示了人工智能技术对架构师的角色和职责进行颠覆和重塑的关键点。全书通过共计13章的系统内容,探讨AI技术在架构设计中的应用,以及AI对传统架构师工作方式的影响,读者可以了解如何利用ChatGPT这一强大的智能辅助工具,提升架构师的工作效率和创造力。计算机7字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字