会员
计算机应用基础(Windows 7+Office 2010)
徐翠娟 杨丽鸿计算机网络/计算机理论、基础知识· 15.5万字
更新时间:2020-08-21 18:08:16
最新章节:参考文献开会员,本书免费读 >
全书共分9章,主要内容包括:计算机基础知识、Windows7操作系统基础知识、Word2010的使用、Excel2010的使用、PowerPoint2010的使用、因特网的基础知识与应用、常用工具软件、Access2010的使用、WPSOffice2012的使用。
品牌:人邮图书
上架时间:2015-09-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
徐翠娟 杨丽鸿
主页
同类热门书
最新上架
- 会员
大话机器学习:原理|算法|建模|代码30讲
本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于回归事物本质,规律性、系统性地思考问题理论为实践服务并且反过来充实理论,为更多人服务的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的到底是什么,为什么要这样做的通俗理解。尽可能计算机17.3万字 - 会员
决策算法
本书源于斯坦福大学的相关课程,主要介绍不确定状态下的决策算法,涵盖基本的数学问题和求解算法。本书共分为五个部分:首先解决在单个时间点上简单决策的不确定性和目标的推理问题;然后介绍随机环境中的序列决策问题;接着讨论模型不确定性,包括基于模型的方法和无模型的方法;之后讨论状态不确定性,包括精确信念状态规划、离线信念状态规划、在线信念状态规划等;最后讨论多智能体系统,涉及多智能体推理和协作智能体等。本书计算机25.7万字 - 会员
网络安全技术标准教程(实战微课版)
本书以网络安全为主线,对计算机网络安全所面对的各种威胁、表现形式、解决技术、应对方案等知识进行讲解,让读者全面掌握网络安全技术的应用方法和防范措施。全书共10章,内容包括计算机网络安全概述、网络模型中的安全体系、常用渗透手段及防范、病毒与木马的防范、加密与解密技术、局域网与网站安全、身份认证及访问控制、远程控制及代理技术、灾难恢复技术等。在正文讲解过程中,穿插了知识点拨注意事项动手练等板块,以助读计算机12.3万字 - 会员
SPSS统计分析标准教程(实战微课版)
本书以SPSS28.0中文版为平台,以实用为原则,由浅入深,全面系统地介绍SPSS的基本功能和实际应用方法。本书涉及面广,从SPSS基本操作开始介绍,覆盖大部分常用功能和高级统计分析方法。本书共11章,内容包括SPSS基础知识、建立与整理数据、SPSS基本统计分析、假设检验、非参数检验、方差分析、相关分析、回归分析、聚类和判别分析、统计图形和SPSS数据分析综合应用。在介绍的过程中,图文并茂地对计算机10.2万字 - 会员
重构知识:在线知识传播的疆域、结构与机制
《重构知识:在线知识传播的疆域、结构与机制》旨在探究社会化媒体知识分享平台的知识分享行为规律、知识疆域结构特征、知识构建的动力机制以及知识普惠的技术实现。依托于当前人文社会科学新文科建设总体要求,本书基于传播学理论视野,利用信息科学计算技术,结合复杂网络分析框架,致力于解决当前传播学现实问题。具体而言,本研究旨在探究基于互联网技术的知识传播,提高知识传播效率,推进知识普惠,探究信息技术能够惠及广泛计算机11.1万字 - 会员
人工智能数学基础
本书面向广大数据科学与人工智能专业的学生及初学者,力求通俗易懂、简洁清晰地呈现学习大数据与人工智能需要的基础数学知识,助力读者为进一步学习人工智能打好数学基础。全书分为4篇,共19章:微积分篇(第1~5章),主要介绍极限、导数、极值、多元函数导数与极值、梯度下降法等;线性代数篇(第6~10章),主要介绍向量、矩阵、行列式、线性方程组、特征值和特征向量等,并介绍这些数学知识在人工智能中的应用;概率统计算机8.5万字 - 会员
深度强化学习理论与实践
本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍计算机12.5万字 - 会员
细说机器学习:从理论到实践
《细说机器学习:从理论到实践》从数学知识入手,详尽细致地阐述机器学习各方面的理论知识、常用算法与流行框架,并以大量代码示例进行实践。本书内容分为三篇:第一篇为基础知识,包括机器学习概述、开发环境和常用模块、特征工程、模型评估、降维方法等内容。本篇详细而友好地介绍机器学习的核心概念与原理,并结合大量示例帮助读者轻松入门。第二篇为算法应用,涵盖机器学习最重要与高频使用的模型,包括K-Means聚类、K计算机17.6万字 - 会员
测试设计思想
测试设计思想是本书的主题。针对测试的两个基本目的和五个基本问题,本书归纳了八类测试设计思想,即系统的思想、枚举的思想、准则化的思想、多样化的思想、统计的思想、冗余的思想、推理的思想、控制的思想。围绕每一类思想,本书深入讲解来自不同领域的测试设计方法、实践及理念,借此剖析如何依据该思想缓解测试的基本问题。了解这些思想,有助于读者奠定扎实的测试理论基础,适应当代研发生产活动多学科交叉、多领域融合的发展计算机20.4万字