
会员
生成对抗网络入门指南(第2版)
史丹青编著更新时间:2021-07-16 16:48:40
最新章节:参考文献开会员,本书免费读 >
生成对抗网络毫无疑问是当今热门的人工智能技术之一,曾被美国《麻省理工科技评论》评选为“全球十大突破性技术”。《生成对抗网络入门指南》是一本结合基础理论与工程实践的入门型书籍,深入浅出地讲解了生成对抗网络的各类模型以及技术发展。本书面向机器学习从业人员、在校相关专业学生以及具备一定基础的人工智能领域爱好者。通过本书的学习,能够了解生成对抗网络的技术原理,并通过书中的代码实例深入技术细节。本书共分12个章节,其中前半部分分别介绍了目前研究领域已经较为成熟的生成对抗网络模型,比如DCGAN、WGAN等等,以及大量不同结构的生成对抗网络变种。本书后半部分介绍了文本到图像的生成、图像到图像的生成、离散数据的生成以及当前前沿的高质量生成技术,结尾总结了目前生成对抗网络在行业应用中的研究与发展。希望本书能够帮助广大读者跟上新技术的前沿,成为人工智能时代的先行者。
品牌:机械工业出版社
上架时间:2021-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
史丹青编著
主页
最新上架
- 会员
秒懂AI提问:让人工智能成为你的效率神器
我们在运用AI的时候,有时得不到自己想要的回答,于是责怪AI不够智能。我们容易忽略的是,AI的回答质量往往取决于提问的质量。《秒懂AI提问:让人工智能成为你的效率神器》系统地介绍了20种向AI提问的有效方法,用这些方法可以让AI给出高质量的回答。在介绍提问方法时,本书紧扣日常工作和生活,并通过对比让读者直观感受不同提问方法的效果,最后引出更多场景下的应用,让读者真正学以致用。《秒懂AI提问:让人工计算机5.4万字 - 会员
高效用DeepSeek:职场逆袭的实战指南
本书以DeepSeek应用为基础,讲解了DeepSeek在自媒体、咨询、营销、教育、翻译、职场、编程等多个领域的应用。书中通过丰富的案例和详细的指导,展示了DeepSeek如何帮助自媒体人打造“爆款”内容,如何为咨询提供高效决策支持,如何在营销中实现流量裂变,如何重塑未来学习范式,以及如何助力职场人和企业实现业务增效等。本书内容通俗易懂,案例丰富,无论是AI(ArtificialIntellig计算机8.2万字 - 会员
人工智能算法基础
本书分为4章,共20章。其中第1篇为基础算法篇,从第1章到第9章,讲述排序、查找、线性结构、树、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,从第10章到第14章,讲述分类算法、回归算法、聚类算法、降维算法和集成学习算法;第3篇为强化学习算法篇,从第15章到第16章,讲述基于价值的强化学习算法和基于策略的强化学习算法;第4篇为深度学习算法篇,从第17章到第19章,讲述神经网络模型算法、计算机0字 - 会员
AI提示工程实战:从零开始利用提示工程学习应用大语言模型
本书介绍提示工程的基本概念和实践,旨在帮助读者了解如何构建高质量的提示内容。内容包括:认识大语言模型、ChatGPT应用体验、ChatGPTAPI、PythonChatGPTAPI库、提示工程、提示类型、基于提示工程应用Python数据分析等。计算机14万字 - 会员
科学仪器设备配置学:人工智能时代的界面管理
本书共八章,从高校资源配置的教育、科研、社会、经济规律视角,以建设卓越世界一流大学为导向,对高校科学仪器设备配置中的问题进行研究。计算机17.5万字 - 会员
DeepSeek原理与项目实战:大模型部署、微调与应用开发
DeepSeek是一种基于Transformer架构的生成式AI(ArtificialIntelligence)大模型,融合了MoE架构、混合精度训练、分布式优化等先进技术,具备强大的文本生成、多模态处理和任务定制化能力。本书系统性地介绍了开源大模型DeepSeek-V3的核心技术及其在实际开发中的深度应用。全书分三部分共12章,涵盖理论解析、技术实现和应用实践。本书通过深度讲解与实用案例相结合计算机17.1万字 - 会员
人机沟通法则:理解数字世界的设计与形成
随着ChatGPT等人工智能和语言模型不断进步,了解这些技术的含义和潜在陷阱比以往任何时候都更加重要。作为享誉全球的跨技术和设计学科思想家,前田约翰利用他的丰富经验,为企业、产品设计师和决策者提供了可行的指导。通过深思熟虑和偶尔异想天开的例子,他构造了一个可以描述任何机器学习系统的关键功能的框架,并展望了可以如何使用它们来创造富有包容性和改变世界的产品。对任何想要深入了解机器如何“思考”以及未来可计算机9.6万字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字 - 会员
Joy RL:强化学习实践教程
本书是继《EasyRL:强化学习教程》(俗称“蘑菇书”)之后,为强化学习的读者专门打造的一本深入实践的全新教程。全书大部分内容基于3位作者的实践经验,涵盖马尔可夫决策过程、动态规划、免模型预测、免模型控制、深度学习基础、DQN算法、DQN算法进阶、策略梯度、Actor-Critic算法、DDPG与TD3算法、PPO算法等内容,旨在帮助读者快速入门强化学习的代码实践,并辅以一套开源代码框架“Joy计算机7.8万字