![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
定理2 如果函数x=f(y)在区间Iy内单调、可导且f′(y)≠0,则它的反函数y=f-1(x)在区间Ix={x|x=f(y),y∈Iy}内也可导,且
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078003.jpg?sign=1738758706-7ad8mUBaAEhmT5udVdV6IL0nPycUqXhE-0-76869730b2e5d98e378a9670ca0ef4f3)
证 由于x=f(y)在区间Iy内单调,故其反函数y=f-1(x)在区间Ix存在、单调且连续,因此,对于任何x∈Ix,当Δx≠0时,
Δy=f-1(x+Δx)-f-1(x)≠0,
从而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078004.jpg?sign=1738758706-zn4ncor5AX1KhG1lZqiXT6jHN8evWZLN-0-fab0cd22f5367b7487d3c8d521a45034)
由于x=f(y)与y=f-1(x)的连续性,即Δx→0时,Δy→0,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078005.jpg?sign=1738758706-BIR70Y8nJsZQY3VDa9qxgM0fz4wbte4P-0-a0ff4ba075ca51f6341a97eb8a63029d)
例7 求y=arcsinx的导数.
解 设x=siny,,其反函数为y=arcsinx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078007.jpg?sign=1738758706-KKPTgaAgN1ipw0tiaucLdRskiXLccR5y-0-07d348677565593d1568239750eb621d)
又由于,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078009.jpg?sign=1738758706-LYIeS5XAt1YeVVfGNd2ArRowWXppRjfE-0-63d7e166e07e8319088397575ba95122)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079001.jpg?sign=1738758706-OuK20djX8tBwEXmsGN7vFJXfJaQm53uV-0-923117ddd9ed7e152000b0c7ca5b0ad1)
例8 求y=arctanx的导数.
解 设x=tany,,其反函数为y=arctanx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079003.jpg?sign=1738758706-hXQTh9udDJzkukvnkLj9bDgNnQzFw5wm-0-0e5b45b1daf0510288a2fc3d15275933)
又由于sec2y=1+tan2y=1+x2,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079004.jpg?sign=1738758706-XWK5NOZ0W8UafOqI1JekyO9Tdn2ZYjgg-0-1a391ce805e3ddfb05e7b178e82e14cd)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079005.jpg?sign=1738758706-psXwPwTl8om0cgRX34wJOAMbXE9k6tJk-0-a1e82de5474d30882da6353ebb15968b)
例9 求y=logax的导数.
解 x=ay与y=logax互为反函数,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079006.jpg?sign=1738758706-YyQ01Q7p3Q1OkH7eGhhfs7QYvEgJ7X8k-0-a5e07df00beb6b9cd50b973ca0258eb9)