![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8145.jpg?sign=1739691455-1OwwMeMN6jjHv37Wn3cCz8XZLGVqq260-0-e891282f389d5a1af6156f19bc14c2de)
是两个s×n矩阵,则s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8146.jpg?sign=1739691455-3M4o4wiW0dOSu39YDC3PjRTdBG5qDJAH-0-badab415c0a10ee8a451ffa333c1b81b)
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8149.jpg?sign=1739691455-qJc9uwKeyRYbVkEeMunFN3eZG4pAxaz1-0-c3abe8f9e353a10ad08c1a77955f979e)
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8151.jpg?sign=1739691455-SWXl9UgrONRIehMd2I2E00eteOfqNrXo-0-78f38fa7238dbf16dc517642a482a251)
B是一个n×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8152.jpg?sign=1739691455-bRxr0NWVqkkoOS9TE4QMM15pIf2XJV8o-0-15c0df2ca84b56210907026dd1a47cdc)
作s×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8153.jpg?sign=1739691455-DGrzktWeUbP1spGOZKfVXZAxT3TGZbrm-0-425afc5da5d0ba9083f76f0de85ff865)
其中,
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8154.jpg?sign=1739691455-PZUdIMzmrg8GUAkRZymboTvVx6GrvHqU-0-ccccf7336a03ca965511a3e232389e55)
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8157.jpg?sign=1739691455-vxbwF6K8XPEDub54pjgfM2FtAftEyQFW-0-d9a4eafa2a118409a58412108738a593)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8158.jpg?sign=1739691455-jtsw87jXjxiTb5yBT9yxIaRlQnP22DRy-0-da79862db99fbd2911e9fcc0d463c13f)
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8161.jpg?sign=1739691455-DKgyIGKfRgzLjZ2aRwJTrQXm4zH3qnTW-0-15e9bb62be7cfe659481f66188f64fa0)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8162.jpg?sign=1739691455-imGMBbMv3Cg0oFD3yn1KjHUuI6GN9LPB-0-40ebc76f1a45e5a2550618a32a2bfae7)
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8165.jpg?sign=1739691455-3D6hRmTYPm3rAqQHHjJC9zP09ubQSlJd-0-a9fd574b1403259a7ddf656c84466b8a)
s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8167.jpg?sign=1739691455-0cTlncz7Jx8WxLk2HFp9rpPssInmeul7-0-5a324100e8792f12eef7b915b48f99f8)
称为A的转置矩阵,记作A′。
【手工计算例8】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8168.jpg?sign=1739691455-dv3Pa862CFZYt1RuM6SIpqYAAJ9pJ8pJ-0-664e4022dc78bd8b2aec660774999fb6)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8169.jpg?sign=1739691455-EHG9SZiaB7kHUTlnASqs1NZNhAJ3Sctb-0-35fe1edda1b6cda371d9441a3a4cea65)