![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§4 微分形式
微分形式(又称外微分形式)是一种很有用的数学工具.采用微分形式记号,能够统一地表达上节中的几个重要公式.这种表达形式还能作很一般的推广——对进一步的数学研究有重要意义的推广.虽然我们这里还不能对有关问题作全面深入的探讨,但初步结识微分形式也仍然是很有益处的.
在学习第二型曲线积分和第二型曲面积分的时候,我们涉及到这样一些被积表达式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0090_0575.jpg?sign=1739501613-ttwsG9ZWfhlV3FKl04YyaBkWHmCKyuT2-0-dac45324e886a7faa94728aaa3c0f839)
像(4.1)和(4.2)这样的式子,分别被称为(R3中的)1次微分形式和2次微分形式.我们还把如下形状的表示式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0091_0576.jpg?sign=1739501613-yS5fSNhqbeyLxxGG0JIIH3KjvQAjGvgK-0-964c8d0cd8e8bb9172facd920b7c788d)
叫做(R3中的)3次微分形式.
在讨论曲线积分的时候,我们把(4.1)式中的dx,dy和dz看作有向长度(有向曲线上一段微小的长度在三个坐标轴上的投影).在讨论曲面积分的时候,我们把(4.2)式中的dyΛdz,dzΛdx和dxΛdy;看作有向面积(有向曲面上一块微小面积在三个坐标面上的投影).至于(4.3)式中的dxΛdyΛdz,我们也把它看作R3中的有向体积元.为了体现有向性,我们约定:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0091_0577.jpg?sign=1739501613-1If7omfKV10tycTTrl271A86fovD9ji6-0-7ec173b454d01f48addeea7befba8140)
通常以dxΛdyΛdz表示正的体积元.于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0091_0578.jpg?sign=1739501613-urGY4IgNrld0US4Df0p5azSiHatjanSU-0-5d62fcebc2f86db96ccdef0ad0228bba)
——这里的
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0091_0579.jpg?sign=1739501613-T5j3uLhGVy6s6I9e57Jo0yVwXBK5DOFN-0-d5847c50f9ab0ffac33bff9f5395cd9a)
表示通常的三重积分.
除了上面所说的1次,2次和3次微分形式而外,我们还把数值函数f(x,y,z)叫做(R3中的)0次微分形式.
在Rn空间中,我们把如下形状的表示式叫做p次微分形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0092_0580.jpg?sign=1739501613-TiuBgeCQ18105jVSfU0kO7NofyDhZwF5-0-57f5d4dfcc52c8849f7d5512af775985)
这里对每一个标号i1,……,iP都从1到n求和.为了书写省事,常常把(4.4)式简单地记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0092_0581.jpg?sign=1739501613-Wwpd96qyflUQhQB0ycNBi9J6mqLdCtej-0-b9b704b8b817a26b6a0f269a48cb60e0)
——对于p次形式而目I是p重指标
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0092_0582.jpg?sign=1739501613-kCURwaN0SL7gWs2BWeolfPNtMymJKLWs-0-d2bfa8fc3cdf7200bfe0de2191c8e31d)
它的每一个分量都在1到n范围内变化.我们也把数值函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0092_0583.jpg?sign=1739501613-H26klYqxrSqB7idXhHKc1UB5CnfbrkQK-0-2434e6bbb02d0db474e7f3f2b49c72c4)
叫做(Rn中的)0次形式.
对于p次微分形式,按以下两式定义了加法和乘以数值函数的运算:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0092_0584.jpg?sign=1739501613-KipjARyo5XgCrrZdHYEPF4ivQwGGyw0X-0-9afddb3508cc737af4eab88d76c19e07)
关于符号“Λ”,我们约定
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0092_0585.jpg?sign=1739501613-CQFgZP8NXNeZBUrNfHdEKhSQebeCeZHS-0-b8f3e5615a7050b872bec448a2c4aff9)
鉴于这些关系,表达式(4.4)中某些项是0,另外还有一些项可以合并.于是,(4.4)式可以写成这样的形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0092_0586.jpg?sign=1739501613-SowpIqTQW1WB43S72AvYfbAmLWFNsHnh-0-83b09b09a648fd93310c7f5cca8e631e)
这里求和号下的圆括号表示对满足以下条件的i1,……,iP求和:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0093_0587.jpg?sign=1739501613-axVpuxN7YzHFlYTVMDa0x6w621zfWfoq-0-fd82e854aee5b1b2a93231c6df609f4b)
为了书写省事,也常常把(4.7)式简记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0093_0588.jpg?sign=1739501613-OLJ8325NrMijT3IOePnL7II7iBcu4A2o-0-0273dfb0915bb15a8d9af182085b4391)
下面,我们扩充符号“Λ”的用法,在微分形式之间定义一种外乘运算:
(1)对于0次形式(即数值函数)f与次形式ω规定
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0093_0589.jpg?sign=1739501613-zfolDnKUlSOkErz2Oc4S01ee2QAGiGmh-0-917062c4dc199056b41ce9e8795e4f23)
(2)对于p次形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0093_0590.jpg?sign=1739501613-cncebOt2MvYayCT8idUxjG15tezFAf9u-0-29a13567edd0172a910e38f08ef69573)
与q次形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0093_0591.jpg?sign=1739501613-lGwoJWPT24tCJUoIPUXElrbnxMEu0oCg-0-7981c930ca143f22447fbd09d390d92b)
规定
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0093_0592.jpg?sign=1739501613-yOiv01y9AToSfAlEA8QVEb0HDbZHQomN-0-68393f48b15355cbc10ad5ffcae032c0)
一所得的结果还应利用关系式(4.5)和(4.6)进行化简.
这样定义的外乘法适合下面所述的运算律:
设f1,f2,g1,g2是数值函数,ω1,ω2,ω是p次形式,θ,θ1,θ2是q次形式,η是r次形式,则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0093_0593.jpg?sign=1739501613-oSksWhY1oOeYMQvLWduRhWoMaKq5H4u8-0-a29953a695f97b536ee05937fbf40734)
例1 设有微分形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0093_0594.jpg?sign=1739501613-SvlQQcQ2KvXJfbBP7uAaPzSRnX9BN4aV-0-ff983d4f32f70114498e853e958cc8f2)
试计算ωΛθ.
解 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0094_0595.jpg?sign=1739501613-JnCGN5vsQ4BleMo3nvehJEm3bI0crEy8-0-55474470e456c4e34b3391f2512fb8dd)
例2 设有微分形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0094_0596.jpg?sign=1739501613-0HXdwVKH5XEyu8N26BDcIF95f4kRr1br-0-da28b4b3e497bf2575155c1f79f13dda)
试计算ωΛθ.
解 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0094_0597.jpg?sign=1739501613-RSe71DDqsYSMkXf0mRU1A5ZMi6S9DXha-0-20504585ac7ed64eab621e298a981630)
例3 考查Rn中的n个1次形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0094_0598.jpg?sign=1739501613-lWJS7aPnGeNBuNZVYxmwlSBw7hfHtX37-0-033d11d58b69a8f563ddcb0cb4d5c3a8)
试证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0094_0599.jpg?sign=1739501613-8FlwBdy42op1gT9UI9KukJHB4dAkuGkx-0-fe94ca248f74d978848cfdc9026e6298)
证明 根据定义应有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0094_0600.jpg?sign=1739501613-tcwNNQzcQQH2a2Po7rDvuwtsrtRvgULq-0-7b2dc7990523bf9aa9037a36f4c38cb8)
为了整理上面的表示式,我们引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0095_0601.jpg?sign=1739501613-bsdlcoo9yHOIwEhcp4PjB18lsXXUuuI6-0-faf68bc9bce1dc6a96b56ad3138671bb)
利用这记号,可以把表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0095_0603.jpg?sign=1739501613-hhjEEQBqw9Rgv5cyUdGUuC6A1iw2fNz2-0-c0b33c74c07005b1cd0d003c346228c4)
这样,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0095_0604.jpg?sign=1739501613-s730vVFM48BUptrAjaR5iLhWDsEsMnq0-0-e5453d03d33a85ddf3ddd727089e2153)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0095_0605.jpg?sign=1739501613-xPKjS1xziZZWqTzkiWGZDa3Rx201a8hP-0-8f66eba0601a1071923fd1b399275000)
例4 设fj(x1,……,xn),j=1,2,……,n,是数值函数,则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0095_0606.jpg?sign=1739501613-4ihEuljX9IAI9hfaZzK9eHobaeEqsFmj-0-db196b840827b435ac048230133031ed)
证明 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0095_0607.jpg?sign=1739501613-WVZL3QFjs45sXts1Ugd9YTUosDXghM32-0-fcd0c9d1d8544b022ecdbaaf0cf3a796)
利用例3,就得到所求的结果.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0095_0608.jpg?sign=1739501613-We2GNqqLVAhEohUYoIyHBWL2fBKXImPL-0-fbc87b07cb4384d15fcb93d66161fdb3)
前面已经谈到,任何p次微分形式都可以写成
其中∑号下的圆括弧,表示对满足以下条件的重指标I={i1,……,ip}求和:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0095_0609.jpg?sign=1739501613-DdEmNjcHZvoLKNLMpK7BuOnLxBhf5j3R-0-7fd869814a025d159649971dea06bcb6)
在这样的标准表示下,如果各系数a1(x)都在某区域上r阶连续可微,那么我们就说这形式ω在该区域上是r阶连续可微的,简称是Cr的.对于r≥l的情形,我们可以定义一种运算d,这运算作用于一个p次Cr微分形式,产生一个p+1次Cr-1微分形式,运算d由以下条件唯一确定:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0095_0610.jpg?sign=1739501613-GUjzVweud8sC2SKjJumS0IDrIiNmb7U2-0-86b192de341d08eada4a111695ac34c3)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0611.jpg?sign=1739501613-zH603imRX3dAqjHjCXuQFy9Ws4Fb1D96-0-b8fbebb3480ed77e29de53197af861b1)
(这里设ω是p次形式);
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0612.jpg?sign=1739501613-F0APHbmMsN3iPCWIt2RnaUvuVblMLmnX-0-a88922a3cfba5725d5691c9151a732d5)
(d4)如果f是0次Cr形式(即r阶连续可微函数),那么df就是函数f的微分.
我们来说明这样的运算d是完全确定的.由于条件(d1),我们可以只考查d对“单项形式”的作用,不妨设ω具有这样的形状:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0613.jpg?sign=1739501613-OMgKkjZwXpFpStZSvNR4L8SnBULzRru2-0-f832acde8e2d50c7f2d82c25b8840811)
利用条件(d2),我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0614.jpg?sign=1739501613-G1NxtMZQV1hbJUpbuiDsTIX7x7kU1K6h-0-44a213376aa3ccce1d263404d38db84a)
利用条件(d3)(并利用(d2)),通过归纳法可以证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0615.jpg?sign=1739501613-PI8Qy9sxs8jkzZCBB1ItPP5MiEnNZr9U-0-48cc3204c1780f95aeca53e4f26c7501)
这样,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0616.jpg?sign=1739501613-dk3cXraE9d3qHu2dCrRPFuEs765cZQGk-0-5df047cdba2bd10c1bc47d546fa7b1cf)
根据(d4),我们得知
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0617.jpg?sign=1739501613-jaCYm1gjhmmgfxX6QzR9pBQFpGAONE94-0-7f34b9ff448dde0a42f68c8b8cffde57)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0618.jpg?sign=1739501613-ZZI1t7OlCtdRxcIlaR9MWa9sK3OiFeRL-0-58b592c86c0da09fba3d905200bd8dd5)
我们把由性质(d1)—(d4)所决定的运算d叫做外导数或者外微分.根据上面的讨论,对于
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0619.jpg?sign=1739501613-G9DuPjNrT4mw5EMyk1VOOLGDGMRieFSD-0-0756bd833a7626b78724caaca54880b6)
应有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0096_0620.jpg?sign=1739501613-2EY1GBRO6bKIp14frOQfNbH17HLzJH1W-0-1a253136a33ec6116955aa1774ad27ec)
下面,我们再来考查R2和R3中的微分形式,并给格林公式,局斯公式和斯托克斯公式以新的表述.
在格林公式中,曲线积分的被积表达式是R2中的微分形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0097_0621.jpg?sign=1739501613-3J7iqU6SaRhwVUYMbuyH9qhVRuPUahxg-0-f338866af4eba6ccde8fda1e096ab692)
计算这形式的外微分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0097_0622.jpg?sign=1739501613-wSmOZJWYl9kmc5jUCU6luAkPbIgSLTqk-0-aeb61e35e9a59407e227e575c14a0116)
于是,格林公式可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0097_0623.jpg?sign=1739501613-HyblKukA5WdSjOrCcIdGlv7kMqwvDMOg-0-ec66a7fc8fe8eda25e0e851261beff8b)
——这里的D是满足一定条件的平面区域,而∂D是它的边界曲线.
在高斯公式中,曲面积分的被积表达式是2次微分形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0097_0624.jpg?sign=1739501613-kxxxkxuxzzjq2FynlkshLZSbn58Lq70y-0-0a77d16a1fbbbac0f2aaf23b4fb17bdb)
计算这形式的外微分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0097_0625.jpg?sign=1739501613-AT4VB06tjqXptXyfjf2ZkiKLMrABfWwm-0-0f9595ae392d9569694ddd5cca52ef5e)
于是,高斯公式可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0097_0626.jpg?sign=1739501613-6VuYlOT1lDjoQLm1AwCZLQ1lRvk8DRql-0-bf7b1aca0b7638b99898e4f7c32b95e7)
——这里的D是满足一定条件的空间区域,而∂D是D的边界曲面.
在斯托克斯公式中,曲线积分的被积表达式是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0097_0627.jpg?sign=1739501613-qK09MxGvixJQTp5NzetahgAf9Lsa6I3X-0-44031e3d539146f3d30eb0e9782db920)
计算这形式的外微分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0098_0628.jpg?sign=1739501613-oOHfKwsMqhiUeRb4YTDtwxdpYA7XhDnh-0-973809adc1b008126cdaf1d890a8d25d)
于是,斯托克斯公式可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0098_0629.jpg?sign=1739501613-x4IgnbMm1wczTL3AmPQUcrsSMbptJUkQ-0-eabc6d870a04e1e9c6f210d9bacedde6)
——这里的D是满足一定条件的可定向曲面块,而∂D是D的边界曲线.
我们看到,采用微分形式记号,格林公式,髙斯公式和斯托克斯公式可以统一地表示为(不论维数如何,都只写一重积分号):
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0098_0630.jpg?sign=1739501613-GfrYm8tOcVCI0fhnikF9vU2Bg0H61Fiy-0-48add4ac4926a3c906075f009aaa5c2e)
这里D是适当的区域或适当的曲面块,∂D是D的边界.人们把这样的一些公式统称为“斯托克斯型公式所有这些公式,都把展布于一定几何形的积分,与沿这几何形的边界的积分联系起来.其实,可以归入这一类型公式的还有牛顿-莱布尼兹公式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0098_0631.jpg?sign=1739501613-xWwtjVy3aJAMacKJpr9jKjdRxsGE61RK-0-605912e5c13a96bc4898260c182d959b)
——这公式的左端是沿闭区间I=[a, b]的积分,右端的表示式可以解释为沿I的边界∂I的“积分”.
所有的斯托克斯型公式都可以看作牛顿-莱布尼兹公式的推广.事实上,这些公式证明中的关键步骤,都用到了牛顿-莱布尼兹公式.人们把牛顿-莱布尼兹公式叫做“微积分的基本定理”,这是很有道理的.