![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§7 恰当微分方程与积分因子
微分方程式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0193.jpg?sign=1739501770-mxMDn3Iu5r3wPsPQJWkFSB2ICJfBBId6-0-7f22bd60f7335d74e73e24c70706782c)
可以改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0194.jpg?sign=1739501770-W5Tf3HsT4cL08MzhB2g0l7u3JmaQwAHW-0-b128a06db74fc581d2a6cb1018815958)
这种写法的更一般形式是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0195.jpg?sign=1739501770-Xmn8ZBVFAYArGinN2BObuKFb1JTOuq8V-0-f4d022cef646d22b8f1fd77f041eb14c)
将一阶微分方程写成这样的形式,对于探寻初等积分方法,有时比较方便.
7.a恰当微分方程
首先考查这样的情形:方程(7.2)的左端是一个恰当的微分式.我们把这样的方程叫做恰当微分方程或者全微分方程.对这种情形,存在连续可微函数使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0196.jpg?sign=1739501770-8GyBmlKmMdAhkjgJeVl5Scq2uqIfm1jt-0-fe6274f3c82414a2c133e1c7f025cb9e)
于是,方程(7.2)的任何一个解y=(x)必定使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0197.jpg?sign=1739501770-VzZ3Q06te7ApAqUeWm4PfGjaSqZ4sucM-0-268005ae6ddb4c6bc6e93d57558ca85e)
因而满足
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0198.jpg?sign=1739501770-yf8bWrWQ4F2vvuPOtpLPUtvvHxRB0L99-0-be2e2e1048b3db130b3d08a9d798a30d)
——这里C是常数.反过来,由于(7.3)式,任何满足(7.4)的连续可微函数也必定满足方程(7.2).我们求得了用隐函数形式表示的方程(7.2)的一般解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0199.jpg?sign=1739501770-xdqKjw18e3ptKOVDFWRLfKfXzfJK6daE-0-ab3ded63b6db8b830371a9171186d16b)
这里C是一个任意常数.像这样的用隐函数形式表示的解,通常叫做“积分我们得到以下结论:
定理1 恰当微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0200.jpg?sign=1739501770-mZUsYy5yWI1CcpEVdXYHAnIluIW4Fy6x-0-71c27217319c683d1e25bbf77d90f909)
的通积分为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0201.jpg?sign=1739501770-Uv7UzTlXwe7zyOEhssjx3LStMv5cwFRM-0-9924ddbf555a9b46427eab646dcea7b3)
这里U(x, y)是方程左端微分式的一个原函数,C是任意常数.
上节中的讨论,实际上已经解决了以下两个基本问题(特别是对单连通区域的情形):
一、怎样判断像(7.2)那样的方程是否恰当微分方程?
二、如果(7.2)是一个恰当的微分方程,那么我们怎样具体求出方程左端微分式的原函数?
因此,恰当微分方程的求解问题,可以认为是已经解决了.
具体求解的时候,常常可以通过观察直接写出原函数来.要做到这一点,需要十分熟悉微分的运算法则,并善于将微分式分组.请看下面的例子.
例1 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0202.jpg?sign=1739501770-ZSmjBOY7wkopDqxJPYRHKB6BRZj7AzpE-0-0bf0a693ac30f50b71f0cffd74d693b2)
解 将方程左端的微分式分成两组:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0203.jpg?sign=1739501770-J9AOfAyV23GHYQ5kGKzj716xZdqz46OX-0-40432ef3c933bc8466cf3427e33107bb)
很容易看出:第一组微分式的一个原函数是x ey第二组微分式的一个原函数是y2.因而原方程左端微分式的一个原函数是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0204.jpg?sign=1739501770-t4UF9fvWfX7yBuHdytno9gl8ZNx8NEiS-0-be73adf275f18057be734cac2b29df10)
原方程的通解(通积分)为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0205.jpg?sign=1739501770-BWYYy7Jip6HETmzRJsrPjn4nCOx6HIHM-0-9cddbc6a46166c3876e615f5bed8c837)
例2 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0206.jpg?sign=1739501770-fF7DYkkwRJEML7fth3P2VL7GRU0DC5Zu-0-bad0f506f36e14af4f9623fd53f9f988)
解 原方程左端可按以下办法分组
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0207.jpg?sign=1739501770-nQu9oeH50lLCinz3KPyPwPsVR2WegbYv-0-9f77edbce30c6b1da525dce21d357f30)
容易求出上式的原函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0208.jpg?sign=1739501770-6wFcuSEcLuWQzX22FCqWhGxnNL8SWcRa-0-78be5ea0368d3ec7a1fb4f8ee4b875e2)
原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0209.jpg?sign=1739501770-HXfsJQFCEFrWGkjU9d8nn8gKEbzXlSmu-0-863fae65402359f83dde03a4ab962412)
以下一些公式当然是需要熟记的:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0210.jpg?sign=1739501770-At6ggFLpod96c7Zs1wyX6H04iMYK9vlc-0-5577cb2df80f4e49b63883206aebbe46)
应该指出,观察法求原函数虽然很省事,但这方法依赖于技巧和熟练,并不是每次都能成功的.另外,除了简单的情形而外,不容易一眼就看出方程是否恰当的.如果盲目去做,可能会误入歧途.因此,上节所介绍的恰当微分式的判别法和原函数的求法.是必须牢固掌握的.
7.b积分因子
恰当微分方程要求左端的微分式凑巧是一个全微分.这种情形并不多见.对一般的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0211.jpg?sign=1739501770-E5RdAuPIJKr1dc3K5XVjnsBuBjWfaTpu-0-ea2df5a493fd4fd237ea010a2573441e)
我们可以用适当的非零因子去乘等号两边,把它化成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0212.jpg?sign=1739501770-cZ4Cg0wJy7ga1uuBPBI4hsDrCegepsYN-0-9e5022520835b2efeeb8827933547cb0)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0213.jpg?sign=1739501770-P9C9CCM5NncNNFHpXrYdNBJbpeRFiE9n-0-7664b0b1eb53ee1946a3b8abb8adc600)
如果这样得到的方程(7.7)是一个恰当微分方程,那么我们就说μ(x, y)是方程(7.6)的一个积分因子.
我们指出一个重要的事实:任何形如(7.6)的方程,都必定具有积分因子.但这一事实的证明,涉及到一阶偏微分方程理论,我们这里不能讲述.而且理论上的证明,只是肯定了积分因子的存在性,并没有告诉具体求出这因子的办法,对实际解题未必有很多帮助.下面将要介绍的,是求积分因子的某些具体办法.对于一阶微分方程来说,积分因子法概括总结了主要的初等积分法,因而给我们提供了一个很好的复习机会.
例3 可分离变元的一阶微分方程.
这种方程的一般形式为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0214.jpg?sign=1739501770-dut2QmxMEJdPJ3V2IarQToD2Bctt1P0T-0-de9e41d25b40775ef6a5c272d498c42c)
如果M2(y)N1≠0,那么这方程就有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0215.jpg?sign=1739501770-9Sy40vcCvF7tgfa3SCI2hNwkO7To3HfN-0-bb136055e4b2449e47398006321f788e)
用这因子乘方程两边就可将变元分离:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0216.jpg?sign=1739501770-NlGFhwAjhyATdhtKejajVDLJQ6cwVF64-0-f77c2dcf03b37332da9ab746aca33568)
上式左端是一个恰当形式,它的一个原函数为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0217.jpg?sign=1739501770-X9qaFjWg7lC3CGwLvPkqTv8UXMLPwUGE-0-e87ef06baba864e026be084e88e70687)
因而原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0218.jpg?sign=1739501770-5IgC2lhiGnPuOrv1i2rG5qUiniSsXzE7-0-cff7c92a40605ecd44834f35c03b08ec)
例4 考查一阶线性方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0219.jpg?sign=1739501770-jBqvvEAmHWxnTGNyCIsRDTu6wxFjVzIt-0-c54307749e49ddffe91be9ba4eae59f0)
这方程具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0220.jpg?sign=1739501770-2FPFiQci56SRqSI3FFzYLYEZowYsyFF6-0-47e3e945c7b2006ae575bf09fb44f2a6)
以这因子乘原方程,就把它化成了可积分的形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0221.jpg?sign=1739501770-6PJIBNwPELUDbOfdkAvBwX6OlDPhk2aN-0-1200892fb836652ee01f9596cf08126c)
一个函数M(x,y)被称为k次齐次函数,如果它满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0222.jpg?sign=1739501770-0MRzbsUVTJreuUrNR1NdfapoyZJ5M9oY-0-7852facde401262257ad514bb2c2e44b)
连续可微的k次齐次函数M(x,y)满足以下的欧拉恒等式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0223.jpg?sign=1739501770-Z4xNfGsbzCRzn6h5Mv7MejjWllv7e0TX-0-780e77af8db27af50c2bd73f2d1e06e0)
事实上,只要将(7.8)的两边对t求导,然后代进t=1,就可得到(7.9)式.
在下面的例子中,我们考查系数为齐次函数的微分方程.
例5 设M(x,y)和N(x,y)都是k次齐次函数,则微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0224.jpg?sign=1739501770-xgHRxpxtLEdBNDhRIA8CkVzfazdZnoP9-0-0dcacde1dd87b7e785d6c0bae269d869)
具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0225.jpg?sign=1739501770-QRsBWg9QmXyjnjYHC3KQnBSJ8TPfdXRE-0-9877ec6a16987523c9501f374376c95c)
这里设xM+yN≠0
证明 首先,引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0226.jpg?sign=1739501770-hgolgwe6Nuf9thWDdlwLkljzlJMlaJtM-0-933ed0c470f99b596a75b059d0550696)
我们来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0227.jpg?sign=1739501770-NzKOOIcYma7TqUC8zRDTshCmwVXJbuFu-0-d782f049153d9915a6d67e93d174fb45)
计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0228.jpg?sign=1739501770-0ZKw1WFV7TRYuQ8KF3fNwlJcvqWFbFdl-0-ce10e6cae63bedba219f2f6934db0ac2)
所得两式相减,并利用恒等式(7.9),就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0229.jpg?sign=1739501770-jGwUlFYDfM4yJ7rHkt38NxoXnZvc5Uo2-0-0ab28abb180ff17a292ce6b3c6b89bf2)
因而,在任何单连通区域上,Pdr+Qdy都是恰当微分形式.
例6 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0230.jpg?sign=1739501770-hRHYCOVAKonHLfjZlvgs8OjUyHVCQLUK-0-7c29fec91d7f70d7e10fff5077f4da53)
解 上面的方程可以改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0231.jpg?sign=1739501770-IYGoviCHmGJxG7xXYPkaLodLogpgrMLv-0-5df164454f1087ec62acc626f57f6f23)
由例5可知,这方程有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0232.jpg?sign=1739501770-psJgnFssAjrgh6ImwwPhq6MHK3JY5nPu-0-12ad27438def2cee3796c25453abeb78)
下面,我们来求解恰当方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0233.jpg?sign=1739501770-MEVbl5cYIs4hDZv3mFu99opZT4NuHopm-0-19f3cd5c30967894d271bc400ed837cb)
这方程又可写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0234.jpg?sign=1739501770-lFFzdsAxbk3RiWqz9wYGx0uNqk8HLOEb-0-9fe17077a2a832672e22005219d4806b)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0235.jpg?sign=1739501770-ey9d7QD8DBrAMqf6pyX6h8KECpuhBZ4S-0-8690e5005172c58c8641d09bf39a7c53)
积分这方程就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0236.jpg?sign=1739501770-6ppdIZoBK9xX6xFkXJNzNmjvFDzEuFb3-0-a287f9fce004875469ff0778db999a14)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0237.jpg?sign=1739501770-JiDVgDXpNfhq61x0134enu44DTxL5njV-0-3384e9f04e03ac3a0d1c82ee2478e071)
实际解题时,常常用到分组求积分因子法.下面,我们就来说明这种方法.
设是微分式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0238.jpg?sign=1739501770-gvHhwg3N9lu5yPOK1K3CaWuhSzPxSmwU-0-0b7d663fe774ba8cc5a60685e9b703b1)
的一个积分因子,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0239.jpg?sign=1739501770-7aqOhan1Rhsg8J9hQPSBOZe9xiIKCcOq-0-e40f95a6ad5964ca952a0e44fbf2a5bd)
如果φ是一个一元连续函数,它能够与函数U复合,那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0240.jpg?sign=1739501770-U0Fb66y1Ma0OCTP7ROHj9gcTcVUf0zzi-0-459c2f971f28931281fcf84c70fdf299)
也是微分式(7.10)的一个积分因子.事实上,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0241.jpg?sign=1739501770-E8YNQFTJWVfjAytUhaAhQacvskdoNc6Z-0-876202d7997e7ad67a63bc9b9ee380ef)
这里Φ是φ的原函数.
我们来考查方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0242.jpg?sign=1739501770-RQnQbw7U1EBAvpCcrttvtkQQM9UNKKp9-0-2f263062f1ee029b8203841632c918f6)
设这里的两组微分式分别具有积分因子μ1和μ2,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0243.jpg?sign=1739501770-B3LWR0z3QMHuhf3FZp1tbr9hcAJbVp0P-0-74413fd4f5e1eea3f5e6cd203df53535)
如果我们能选取连续函数μ1和μ2,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0244.jpg?sign=1739501770-x75heKhruGXpeNuxLOBamcU6iVngc9bF-0-dcb97385498a82bf26bddb3c772d5bbb)
那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0245.jpg?sign=1739501770-BnTtqAZ6g5Xpzw0igKemiyhx8PUVX7Ab-0-327ce9bad01309dd7c3eada4f4080416)
就是两组微分式共同的积分因子,因而是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0246.jpg?sign=1739501770-tqzsThHQLgmLli2xoqi630TlamlIcGvo-0-30e29048a904d167816f692d6cea0d53)
的积分因子.
实际解题时,采取灵活变通的做法,往往能更快地凑出积分因子来.
例7 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0247.jpg?sign=1739501770-yu4cdC72io4TfWhxuUzx8Dp6BD4uvFjF-0-ff497a29cf06a8d52b3508f0569c922c)
解 将这方程改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0248.jpg?sign=1739501770-yEjFC16EuQaOE1I5rrLBvrJsc8B0a2I8-0-3099875be2f9446a7852580ecdf39f0e)
很容易看出一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0249.jpg?sign=1739501770-KXKOOUtvOZ84ozvI4eKMhVfSIMc5ufxz-0-33e389ce03650b580e9b533f62ea8b5a)
用这因子乘方程两边,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0250.jpg?sign=1739501770-QCsDxUjEBkNkzpbDSvEc1R2tLjpAYaNl-0-37c5c70f730dc502fc382bb204f742aa)
我们求得原方程的通解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0251.jpg?sign=1739501770-tBuXSuhbcjINvMVVS3B8lQYeLplXQEkF-0-8b17814054a19d4d39329c6fbbdd33e5)
例8 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0252.jpg?sign=1739501770-6RZ3DCc2QZYd6WBAlQpM7u3BRRhFJhyW-0-dd468dced4f6787afdb8deb0708ca0ee)
解 这方程可改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0253.jpg?sign=1739501770-aYMPI0cMY9CJg4qT05ZVssSsRrCfUeRD-0-9d1a969439cc4256ddca9be1daf6b94c)
形状如φ(xy)的函数都是前一组的积分因子.我们选择φ以使φ(xy)也是后一组的积分因子.容易看出,只要取
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0254.jpg?sign=1739501770-QcgOoTzh2l3N5zOxUfFiD3DrTeKdzzZE-0-369df419130d92f75c510682e775f402)
就能达到目的.以因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0255.jpg?sign=1739501770-qjRkIJv2OiFqcQJEfdHsAtLrrtQ1CHNP-0-17b773f798176a668d2c5c1058f911c9)
乘方程两边就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0256.jpg?sign=1739501770-90qBw97O0YcNbz5RBa4ejXHtZImO0CWb-0-d7fa685f6f7ddf1b2ef390f9a0596046)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0257.jpg?sign=1739501770-V37kpDV22fVQRIU7jAGQnqRRYFIpkU6R-0-fd1b9b6db017350544ee7bbf14dd9c4a)
另外,因为我们乘了因子可能会失掉x=0或y=0这样的
解 经检验,x=0和y=0都是原方程的解[4].
例9 求以OX轴为旋转轴的旋转面,使得这样的镜面把放在原点的光源发出的光反射成平行于OX轴的光束.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0259.jpg?sign=1739501770-oQqNuOKE2SAJFG55xXYknED8Q9f9yBiL-0-9079f5f26ba50d6cf1cf5b7d211eb49f)
图16-21
解 参看图16-21.根据条件应有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0260.jpg?sign=1739501770-ZkFL5XioROHWUhT9XLZlX0RCUDFhe006-0-0a234819d6ddb055d9db8aeda7759ae2)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0261.jpg?sign=1739501770-BvxRILN7QUmPbDp57ZmSIelgELbUGosd-0-b4d12f927aea901321e11acc55f753bd)
但
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0262.jpg?sign=1739501770-T6KvqSuSYEoY0df6QrfKIu5CHZp9fvX6-0-0dce343606d42c94369c237cb3eca199)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0264.jpg?sign=1739501770-FiRYYsgsjQI0cHmUauWDR6QZaNLJmbbp-0-f80207f52e8cd24b0526fe7dc98f7184)
解 这个关于dy/dx的二次方程,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0265.jpg?sign=1739501770-rE3qmJWSRdwZf7ccmXOoJpI2j7cAWU1d-0-82e915753ba50f03e4b64a5cf548bcbe)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0266.jpg?sign=1739501770-04PZnhEz5bkgZeA563HjvHCghpGSSgA8-0-16830644584d6c4b0f9c26d7ab0e46f2)
容易看出这方程的一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0267.jpg?sign=1739501770-xfNw0XVmQlnLgaWQrkUrwJ5Vs1MS0FpR-0-fc774c64522236cdda25262dc8fff817)
以这因子乘之,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0268.jpg?sign=1739501770-2T8tnfbcgNvuV0pTkGWrTjTkBNkpjjDZ-0-71272686f12eb97db10b8796ce6c7c64)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0269.jpg?sign=1739501770-UHXH7tChd25bMoBdhYp7e9rayUpNXwq2-0-4c3664c7cc52cd83740848523fb9f8ed)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0270.jpg?sign=1739501770-7Tnzj3YbInSBIvRY5i4QqjO5lJf4Wdq8-0-d184d5eec30f8adcda634692327369f1)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0271.jpg?sign=1739501770-ZtzikM2Fld9QPZs6iC8it39ZkOtEItwK-0-aa9531fcd0da3323a9ed80628a60d951)
这是以原点为焦点的拋物线族.在学习一元函数微分学时,我们已经知道拋物线具有这种光学性质.现在,我们又证明了逆命题:具有这种光学性质的曲线只能是以上抛物线族中的一条抛物线.