![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
第十五章 第一型曲线积分与第一型曲面积分
§1 第一型曲线积分
我们已经知道怎样计算连续可微曲线的弧长(第六章§3).在本节中,将对曲线孤长的概念作更细致的说明,然后讨论第一型曲线积分.
l. a可求长曲线
考查R3中的一条连续的参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0192.jpg?sign=1739501567-t0ShHGMrT9vbSNMN2qLVziixxJHz0OEk-0-032782c99f4494df316adb39a98bc3f4)
如果曲线(1.1)的起点与终点重合,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0193.jpg?sign=1739501567-owFsvbaZTuvnYBF6Nxeho5m0qeKaPCAA-0-bbd737b918f71334a1e381274e76d59b)
那么我们就说这是一条闭曲线,如果曲线(1.1)没有自交点(即除非是,只要
,就有
,那么我们就说这曲线是简单曲线.参数方程(1.1)用分量表示就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0197.jpg?sign=1739501567-g5oWyKrAj4onrgY2lLFVE9RaA5a94stO-0-a3e69a7d6f08d4420b61538e1a470ad7)
设和
是曲线(1. 1)上的两点,则联结这两点的直线段的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0200.jpg?sign=1739501567-auDIl91pi8nuW2MEgPd7AL7MWOUGQEK6-0-1e4479fabd1fb06f5077a3d1d518efaf)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0201.jpg?sign=1739501567-rZQeaI0oe44rr2H9ZLbO7WtIf7hb3EmY-0-15e0f4fe2f0c5da781e3e6f1d83e12d9)
假设γ是一条简单曲线,它的参数方程是(1.1).考查参数区间[α,β]的任意一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0202.jpg?sign=1739501567-mSdGbj3yIJGcQ6O9uqW4D6UM1AMn7XYM-0-85df7083279c233ab5101a8483a3aa38)
对于k=1,……,n,将曲线γ上参数为tk-1与tk的点用直线段联结起来,我们得到内接于γ的一条折线.这折线的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0203.jpg?sign=1739501567-5b557kCYJCdhj6AcWO8yQNroqbnmBDdw-0-666a7b337ab20b646579bd6cd5163fee)
定义1 如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0204.jpg?sign=1739501567-P4A1Ksit56WnBBrsKNxTENdRAB1UtgXC-0-919d3a5f44a7ba47002e3c7664c12cdf)
那么我们就说γ是一条可求长曲线,并约定把
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0205.jpg?sign=1739501567-XQZqvf5mDBib0UrzNX8cMwo2iu08nyjF-0-45e3e1718074796a614b1a53082b2195)
叫做曲线γ的孤长.
定理1 设γ是用参数方程(1.1)表示的一条简单连续曲线,则γ可求长的充分必要条件是存在有穷极限:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0206.jpg?sign=1739501567-ahF7AkbK1TBjxeuF4HGHgVlwzQ8ajjP1-0-bf2c678d5022d482a80afce033e8eb2d)
其中
证明 充分性设存在有穷极限
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0208.jpg?sign=1739501567-mRETl5zZ2CEpXduskctdmPGoRghY3Fw1-0-c8af096be80c9c19bc383da6d803bdbe)
则对ε=1,可选择δ>0,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0209.jpg?sign=1739501567-VzqnMh6DPwNovsrFG9DRVPPop80spmoh-0-973cd7a6bc6bb3549cdfb23da655f4bd)
现在设π是区间的任意一个分割.我们可以用增加分点的办法将进一步细分为π',使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0210.jpg?sign=1739501567-LPaBfiKmmOlutqvciTueIdfLX30L9wZ6-0-7e67455b2779e8257d610e3c3b779fa7)
于是就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0211.jpg?sign=1739501567-KBcCNZmSTR5HjLw7UtKCUCzkseOgXW8n-0-b1aafc6df7bf13f10b4d1bd0a821fdc0)
这证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0212.jpg?sign=1739501567-vrDAu327wivSvPu1JpQdRlWcljdo1XZH-0-0e5aecb999ff31ebac5b0981a62df9af)
必要性如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0213.jpg?sign=1739501567-n9qzIiPB3jbs91gMg0TIi4JapwO2pYmM-0-14b9d2b706bdefdc5ebc9238a47f0857)
那么对任何ε>0,存在[α,β]的分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0214.jpg?sign=1739501567-NphRlrspucsG2nssMVvIEN7VbP8zsgNg-0-a7e32fa8d797860c8edb57e72f17a47f)
使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0215.jpg?sign=1739501567-YclkgxjiOYsaxyIKo7X0dCGLIPEQISyS-0-4b9588a4918d9f5496c27d82403960a6)
由于函数r(t)=(x(t),y(t),z(t))在闭区间[α,β]一致连续,存在δ,0<δ<|π0|,使得只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0216.jpg?sign=1739501567-z6EyzfWValwAQXxvD7xyo9LaSUcgW9Q9-0-48599845bc91b4edb575af4204be4050)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0217.jpg?sign=1739501567-eeuBFF5jfh25n7Jca2TxxIt3OTL2ZsCF-0-0f91d6005805f2b45a5d7b380b19272a)
(这里m是分割π0在(α,β)内的分界点的数目).现在设π是[α,β]任意一个分割,满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0218.jpg?sign=1739501567-NOVYlh6e15HoVvCYJQdiJTCccqtIfzYW-0-050ca84a3c96a5a80c08c74b5267346b)
将π0和π的分点合在一起,得到[α,β]的一个分割π1,显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0219.jpg?sign=1739501567-BnYC3a6gyDmWbVcQ6G17yaYElm8il2Ap-0-c26c1a899ee9d0dc1ebe34be9e71d903)
下面来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0220.jpg?sign=1739501567-WNKgAvZdhyFKMkFUDQ5ea3gy2hGske1l-0-a7e1ac6eec6c1a83534be23eb4fc497b)
为书写简单,我们引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0221.jpg?sign=1739501567-94le7ZHR4XyQk5ZBOdxpQ8bJ7b3jHWt6-0-7bf07590a06724b7f17e1c36ed356f50)
和式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0222.jpg?sign=1739501567-rs7znfXb61YqzHyqzoVsCp5g5pkeLnd4-0-76541e2ba77eba0291cc5e1a1a99cd94)
可以拆成两部分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0223.jpg?sign=1739501567-1AqXGA72WTFfX1gMnUuJ0P5N16vktHQo-0-9925122cf29071169a3f4ea6203d3a6e)
其中第一部分所涉及的参数区间[tj-1,tj]内部不含有π0的分点;第二部分所涉及的参数区间内部含有π0的分点(后一类区间总数不超过m个).和数λ(γ,π1)与和数λ(γ,π)相比较,差别只是第二部分和数中的每一项ψ(tk-1,tk)被改变为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0224.jpg?sign=1739501567-txeBfEcixSjkbqgJhArYSl2cCNCqCdVP-0-fe054854e2b0c9f10fff839cec9ea9ff)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0225.jpg?sign=1739501567-JtYefqMELABVHROPrxT8DeykeWs34BLn-0-1372673c2fd9bc3c5ca3b7a5b2646cf0)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0226.jpg?sign=1739501567-PTcOm55CuP6yTAZqkRDTZNoVLPllvyBP-0-e6179f02e886427402dcc2560008e615)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0227.jpg?sign=1739501567-lZl8A7iyTS3rUGoRF5aFmSr8P9l9gVjX-0-19ac6fa1a1e97abb32f88713b9ce1b73)
我们证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0228.jpg?sign=1739501567-SN9n2GJ4Ygic0eJSMb84LqIf3kTsXvg2-0-0dd06ec531daca5cdb7305808d79bf8d)
推论设γ:r=r(t),t∈[α,β],是一条连续可微(或分段连续可微)的参数曲线,则γ是可求长的,并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0229.jpg?sign=1739501567-DDFx5xYY2oxy9crLwEBLEjiFCPZ7GbY3-0-425c490e179492c396116af5a02a3fb8)
l. b第一型曲线积分
设有一段质地不均匀的直金属线L放置在0 X轴上,所占的位置是闭区间[a, b].设这金属线在点x处的线密度等于ρ(x)[1].我们来求金属线L的质量m.这是一道典型的定积分应用题.利用微元法,很容易写出计算公式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0231.jpg?sign=1739501567-K3sehgA5XdlQmD2UFGXZ5Sn6n7V6Hrbz-0-9104b4b69eae4aee9ce67c89d7f258b4)
再来考虑一个类似的问题:如果L不是直金属线,而是一段弯曲的金属线,那么L的质量又该怎样计算?为了解答这问题,我们用一串分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0232.jpg?sign=1739501567-y6HPoHWqsYMw6AcHiEV8I9jZANSSoEbj-0-79aa1e886556db0803ac748f50a83232)
把L分成n小段(这里A和B是L的两端点).在Pj-1到Pj这一小段曲线弧上任意选取一点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0233.jpg?sign=1739501567-H2XOJIyVVAvXhRC8B0cC2g1Y6v11WVvw-0-95cb6097157f090ac667abd7874d18bb)
并把这小段曲线弧的长度记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0234.jpg?sign=1739501567-Eub7iC7DuJtsUe44WcBLo9cn2m9jbuUT-0-e0ac5d3c718a4fc9ceec53bfae9228e5)
于是,从Pj-1到Pj这一小段金属线的质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0235.jpg?sign=1739501567-CryiSzuU1Ka3n8L1fW6aLxNev5VLi7Hd-0-15e9d4bd15a24252e921a92fa87b9cbe)
整段金属线L的总质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0236.jpg?sign=1739501567-Y2PRcEC6AFOO5WEmls7kIWJYAgE5XTpn-0-74df32ed678ea4168fb2896fa66d5278)
如果所分弧段的最大长度趋于0:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0237.jpg?sign=1739501567-3pZ5Hmbww6ZGhgz9QOV1sI5NvXNCy9tV-0-8e1616faef3029d1768d61528fe6add7)
那么(1.2)式的极限就应该是所求的质量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0238.jpg?sign=1739501567-JY4Uywz6RHliMCiMjzHy5qQXrszJjTyQ-0-4940fb5372099539efee8343190e43a1)
这里的“分割——近似——求和——求极限”的手续,与定积分的情形十分类似,但却是沿着一条曲线实施的.由此可以引出第一型曲线积分的一般定义.
定义 2设L是R3中的一条可求长曲线,函数f(x, y,在L上有定义.我们用依次排列的分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0239.jpg?sign=1739501567-YNzhD4UwW6eawPspqaCkR778ZfTNqzAK-0-37858ac0dcdc9a3aed7186c830f1dc1d)
把L分成n段(A和B是L的端点,对于闭曲线的情形认为A=B),约定把从Pj-1到Pj这一小段的曲线弧长记为Δsj,并记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0240.jpg?sign=1739501567-vCoFX8OS1pjAuapxclfc5UtVT6H8vzcP-0-38fe053762d42844b3e9cff99f665e6d)
在弧段Pj-1Pj上任意选取点Qj(j=1,2,……,n),然后作和数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0241.jpg?sign=1739501567-eojUp1ZWv2xyZgNGPeqbH1IKY3H0cEnZ-0-7d8f8e282a57e5778c3225a106bf1271)
如果当d→0时和数(1.3)收敛于有穷极限,那么我们就把这极限叫做函数f沿曲线L的第一型曲线积分,记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0242.jpg?sign=1739501567-T6vXoixhkbz0bibSORPhf3tHd9WPOgMd-0-935f31f787322eeb52ca56db41f7924e)
注记 我们把这种对弧长的积分叫做“第一型”曲线积分,是为了与以后将要学习的另一种曲线积分相区别.
读者容易看出:与定积分的情形类似,作为和数的极限的第一型曲线积分,具有线性、可加性等性质.
如果以弧长s作为参数把曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0243.jpg?sign=1739501567-ABqqNAsSKyz18s7iAqvXbL4CXw9hCdMS-0-a7fb8ff95aa50931f61d9e564c8c0da9)
那么根据定义立即就可以把第一型曲线积分表示为定积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0244.jpg?sign=1739501567-RDx5DOLB8XNwYE0LxOlSz6DzWEMQj4ST-0-f2781c17fa33931372df35baeb546cef)
非弧长参数的连续可微曲线(或者分段连续可微曲线),可以通过变元替换化成以弧长为参数的情形.我们有以下的计算公式:
定理2 设L:r=r(t),t∈[α,β]是一条连续可微的参数曲线,满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0245.jpg?sign=1739501567-ipQWu9R1XNYikX4l9YM1azyRWBLtB2Cx-0-c326b51b7c786b882677efef352025c8)
并设函数f在L上连续.则f沿着L的第一型曲线积分存在,并且这积分可按下式计算:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0246.jpg?sign=1739501567-hIP2qwbMQO0t1sgxUGl7BNcfcFaoRDlg-0-2427216c70a3d0289c31a9e1744efdfb)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0247.jpg?sign=1739501567-ANUjPzd32llBf2vQCuDdE8SoRpqYGrHY-0-43be7ac6ba2e05fe5ab54c54d3da1be5)
证明 在所给的条件下,曲线L是可求长的,其弧长表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0248.jpg?sign=1739501567-cxJILuKf60dqXlmsdyxqlKWXiCrGRS97-0-1d8c51d33af31db0bdf0457cd1d76f04)
并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0249.jpg?sign=1739501567-6yVXYn01nGcrPNBziMHvTUee9fxEz6Ed-0-4024fa8d7c8bc187034ad3304d7f2b8e)
根据反函数定理,参数t是弧长s的连续可微函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0250.jpg?sign=1739501567-h5xffXU9YfNhN9PehYPOryEPBhYyTgBn-0-9197294387cbd9c7442c489aa1504b45)
于是,我们可以用弧长s作为参数,将曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0251.jpg?sign=1739501567-O72cjobPcNntjMCvxV1Fo2o38c9L4YWJ-0-f6f95bf5326b8a7b586ac33fac062ef0)
函数f沿L的第一型曲线积分表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0252.jpg?sign=1739501567-BhlHYI5CVJmka1efHEkLOnSrFmvtSSrv-0-9bbefc186abd587a5cf98c44d0dacbca)
在上式中作变元替换
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0253.jpg?sign=1739501567-EFoSPnO5sVy3FDI3N5SFzQsqDE6TH9qD-0-af06bc14b1e6d1e7b7a74a661fcde66b)
就得到定理中的计算公式.□