![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
10.3 名校考研真题详解
一、判断题
1.若f(x)恒正连续,且收敛,则必有
( )[上海交通大学研、浙江大学研、南京师范大学2006研]
【答案】错
【解析】举反例:利用反常积分概念,很明显可知满足题意,但是
二、解答题
581.如果广义积分(其中a是瑕点)收敛,那么
收敛.并举例说明命题的逆不成立.[中国科学院研]
证明:由收敛,根据柯西准则,
存在δ>0,只要
,
总有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1374.jpg?sign=1739534227-nb2ZBfipQML0x1nvSyokOQb2zFWx3pZO-0-19901d74897818cf68dd7b6eec811808)
利用定积分的绝对值不等式,又有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1375.jpg?sign=1739534227-kGPX9Lwo73YC7qFbRTm3JA1utDr4n5rT-0-6d77bb558c4c266f200d4a1b235699c3)
再由柯西收敛准则的充分性可知收敛.
命题的逆不成立,例如:
设,令
,则
而由狄利克雷法可以判定
是条件收敛的,从而可知
收敛但
不收敛.
596.积分是否收敛?是否绝对收敛?证明所述结论.[北京大学研]
解:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1384.jpg?sign=1739534227-hq3SwP1KEIS5QZRBdkNMyaKzktRODRZd-0-3dabf76b8587dd85a01b2b8ea8d9e9d2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1385.jpg?sign=1739534227-TbEWqIWCYPJ1kZyam7ZJXOZxpSrpEkHd-0-7385ec06cf075627784b79686467cfff)
积分是以x=0为瑕点的瑕积分,因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1387.jpg?sign=1739534227-M176dHThvKhjNTIujDC7vIrCRLFDlGAh-0-8a72fcf9c647c75f6907f3bf5245eb06)
所以与
同阶,所以
收敛.
而,所以
绝对收敛,积分
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1393.jpg?sign=1739534227-jnpjOhLmXzjnVvSvwxdmcxj5rESn4uOx-0-ab95e99f2da55ba1d90b0b37ca7f056b)
是无穷积分,当x>1时,,可利用
的马克劳林公式得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1397.jpg?sign=1739534227-aOzlVtGb1W7VneKjDbHtcNgNGy5kOd9J-0-387a288e19a594ac4045e5f40c852e87)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1398.jpg?sign=1739534227-uoRFfcAXqiZ9kBRCzhSWyWRIrxePQDtv-0-95763517c3334b003a47afef8db728dc)
已知条件收敛,而
绝对收敛,所以无穷积分
条件收敛但不绝对收敛.
综合可知:条件收敛.
617.计算积分[武汉大学研]
解:设显然
在SA上可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1406.jpg?sign=1739534227-Ng7hYC0fP6r5ShfYfTxyIkjNAByLd3QB-0-b61594cc55c69367f5d4cd82ed488f75)
作半径为a和的
圆D1和D2,使得
,由
有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1412.jpg?sign=1739534227-OTcX0uqhH5YaF3nBfE6hUKs6L1ePNQJ7-0-a894756f4cef973739b7ac0e34f1cd37)
而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1413.jpg?sign=1739534227-Qjn24jPPv1MJxHhc6GUbkCVHGELoK23h-0-efb029a62861ea98f9637f035a2f2992)
类似且有
由夹逼原则可得
,
即
所以
1.求[中山大学2007研]
解:由于,所以
绝对收敛.
1.求[南京大学研]
解:令,则原式变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1424.jpg?sign=1739534227-W6GZRyDSC9QSYFjHYC0siEWoVOo547pY-0-22fd6ee5d194e6cdbedb4a7b9e994080)
1.设函数f(x)在区间[0,+∞)上连续,0<a<b.
(1)证明:如果,则
(2)证明:如果积分收敛,则
[中北大学研、北京交通大学2006研]
证明:(1)对任意的,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1430.jpg?sign=1739534227-r4DDiu9pPsrU5fjA2yNjpmWFNoP6Ziv8-0-cb076de9d069fbe85f3f6dee46dae655)
在上式右端的两个积分中分别进行变量替换ax=t和bx=t,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1431.jpg?sign=1739534227-cYGj4tysAxSR9cblKrREWTf5xxj4ID4k-0-8c2026a966fdfb1137565610d3060adb)
由积分第一中值定理,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1432.jpg?sign=1739534227-8QCuBkkPx2W8txom2oAWR8jZObHlXJcl-0-c67eb68c4ccde407213c565bcb750c16)
其中ξ介于aα与bα之间,η介于aβ与bβ之间.令则同时有
由f(x)的连续性及f(+∞)存在性,即有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1435.jpg?sign=1739534227-aW6bxMfFUd6563S2PDKlShPvAP62PrM0-0-d042f4a23baf7cff6176c7ba50f361a9)
(2)与(1)的证明完全类似.对任意的,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1437.jpg?sign=1739534227-bz1bacRumgQJzlgoymHaNUEY4CfXNxUX-0-c5256bda49922e90e5781292204e4a98)
在上式右端的两个积分中分别进行变量替换ax=t和bx=t,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1438.jpg?sign=1739534227-boKS6ZcqBHtYRuu540gwhTYoFa3nuOlZ-0-68702f620a6c678ad0863a4d70023f95)
由积分第一中值定理,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1439.jpg?sign=1739534227-bKAuAbLPjpPXvl1lYGWfSbRfmxe3jmft-0-b264f5225138bac2310eadf6b8dc96ad)
其中ζ介于aα与bα之间.令,则同时有
由f(x)的连续性及
收敛,即有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1443.jpg?sign=1739534227-z824poMSNeREiFTn3zKadR2gqDmiSzGj-0-9fabdde37eb8085e64dd68f390929dc5)
1.设对任意的A>0,f(x)在[0,A]上正常可积,且收敛,令
,
试证明φ(x)在(0,+∞)内至少有一个零点.[南京大学研]
证明:由φ(x)的表达式可知.因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1447.jpg?sign=1739534227-bVg6bZRp15U84eyGsTgSWv6peF7Ei5SA-0-faa769d8a3aa08f922ffa9bedb8bb929)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1448.jpg?sign=1739534227-kB1prNNwA2bcFBcloiweDYO8SxQjddfK-0-80fb5e3a09f61decce4137809e8f452f)
根据连续函数的介值性可得,φ(x)在(0,+∞)内至少有一个零点.
1.讨论的收敛性.[中国地质大学研]
解:令
当α>1时,取δ充分小,使α-δ>1,因为,所以
与
同时收敛,故
收敛.
当α≤1时,由于,所以
与
同时发散,故
发散.
又因为,所以
仅当α-1<1,即α<2时收敛.
综上所述,仅当1<α<2时,积分收敛.
1.讨论的收敛性.[复旦大学研]
解:由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1460.jpg?sign=1739534227-2fJrri3fzFszVUhgS85kgvvNHU8zMDFh-0-958f018539b6543dfef5a1f48ba6d1c5)
所以当0≤p<q-1时,收敛;当p≥q-1时,
发散.由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1463.jpg?sign=1739534227-ocjsumQB8ZS3aDr8V5scPbJ2n9hozjJL-0-f663465b0263008d8cd9e8e006f1da2f)
所以当p>-2时,收敛;当p≤-2时,
发散.故当-2<p<q-1时,
收敛;当p≤-2或p≥q-1时,
发散.
1.f(x)在(0,1]上单调,且广义积分收敛,证明:
存在.[上海大学2006研]
证明:不妨设f(x)在(0,1]上单调递增,则由知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1471.jpg?sign=1739534227-wTroO7oo7qbeyhkrXSZO7E1g5PrHDyr8-0-a781c932262db99a2a81567efcf1312c)
而故由夹逼法知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1473.jpg?sign=1739534227-z7fVsvGi38vlK60j8NqUj8WcJBPlYwm9-0-4f106fb3e11f9b43cb75cd2449726511)