![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
12.2 课后习题详解
§1 富里埃级数
1.证明:
(1)1,cosx,cos2x,…,cosnx,…
(2)sinx,sin2x,sin3x,…,sinnx,…
是[0,π]上的正交系;但1,cosx,sinx,cos2x,sin2x,…,cosnx,sinnx,…不是[0,π]上的正交系.
证明:(1)因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2265.jpg?sign=1739302992-4ylQjdIYaPWYmJbeUlty9RLjQACRiDK8-0-9e08321531578d8ddf892c94eee171a6)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2266.jpg?sign=1739302992-V9MrkPser2z8H8ReNgOEiANbdQZ5bpAk-0-72c2f4ae09e64948fc25f1a6dd72dbf4)
则1,cosx,cos2x,…,cosnx,…是[0,π]上的正交系
(2)因
则sinx,sin2x,sin3x,…,sinnx,…是[0,π]上的正交系
又则1,cosx,cos2x,sin2x,…cosnx,sinnx,…不是[0,π]上的正交系.
2.证明:sinx,sin3x,…sin(2n+1)x,…是上的正交系,写出它的标准正交系
(即不仅正交,而且每个函数的平方在上的积分为1),并导出
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2271.jpg?sign=1739302992-meR9EoaJfHmQHr8Nr2CwYfWdzme0Bs9v-0-e51f7f8abed190ed086f4abd2e6a17f1)
是[0,1]上的正交系.
证明:因
则sinx,sin3x,…sin(2n+1)x,…是上的正交系
又由得
则在上它的标准正交系为
又
则是[0,l]上的正交系.
3.设f(t)是周期为2π的方波,它在[﹣π,π]上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2280.jpg?sign=1739302992-Gf0XRLHp43VARKPQ80GF9x2dBqLkQgJl-0-e8f22b4a7044816da6fbc968866ffdbe)
将这个方波展开成傅里叶级数.
解:因又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2282.jpg?sign=1739302992-IY524wk7ktxA4XeU9kO3wmKwSEIZOaPD-0-c9fe0c0d69c5bca0e86417558d07c67e)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2283.jpg?sign=1739302992-9ksUpePksub5dRmwBG77lZDPhFVHYrAJ-0-22025effc621b67a295d2d7792f35628)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2284.jpg?sign=1739302992-qRQ1h63uHQvYlw0l8L1wcsdrZKhqPek4-0-d5b1c85e0ca6de25bed68a3a3af314ae)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2285.jpg?sign=1739302992-PJkSCX6B0FTJkRzdG3mbzORyq8SuTTfz-0-f4d311d45c5c1aba165f28afa67f28c2)
4.设f(t)是周期为T的半波整流波,它在上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2287.jpg?sign=1739302992-QqBowU7xafYztJHu6aYPKiWHhEgdxYT5-0-0c65914adaa3bc2cf04d0bb9680e9ca1)
将这半波整流波展开成傅里叶级数.
解:因
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2290.jpg?sign=1739302992-nqAhgqXKxTBCuAyfR7OAiyT00a7Telzm-0-a738b615330d50bc9633704cc67e81f7)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2291.jpg?sign=1739302992-uHN8XOoaXmxCdS2CHirBmiH8H7MQn3bZ-0-a8ded3122453deae29980e25b8b7c8a3)
5.设f(t)以2π为周期,在[-π,π]内
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2292.jpg?sign=1739302992-2svXvElPXzSwGNqHG3CfVsKWgrBoDfrc-0-051459cc2ff9588dd4a1600b1a6a6863)
把f(t)展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2294.jpg?sign=1739302992-nkLtohvSqVL5ld6PiGwnW915hTL6Hqkr-0-4259bd95a005c540c531ba9d3bb0df8d)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2295.jpg?sign=1739302992-3hVulvMueMow7E3R4ozRYvMNDYWDEJsf-0-d1d0b559edb563408618b61830e38af8)
6.设f(t)是周期为2π、高为h的锯齿形波,它在[0,2π]上的函数表示式为,将这个锯齿形波展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2298.jpg?sign=1739302992-jj6P4oGjCzRHHpIkNVszFlr6mcx6CmNx-0-1113838bb416f0344eac1897213504f7)
则
7.将宽度为τ、高为h、周期为T的矩形波展开成余弦级数.
解:在一个周期内矩形波函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2301.jpg?sign=1739302992-1ioK4C4fudc6TXIxo1Q24afWad1pYgta-0-de22305781a8d5c946f55e1a8d432f6b)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2303.jpg?sign=1739302992-gXcfJl5PpgWRM85t6YMNznQRcM92NieG-0-cc060cc9ab1f712a2f3a0451a6dd26ce)
8.写出如图12-1所示的周期为T的三角波在内的函数表达式,并将它展开成正弦级数.
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2305.jpg?sign=1739302992-vKqrqdPCmMHolFbIuDN6fCMU3maKIBPC-0-20f806d010434dec9fcf139239fabb3b)
图12-1
解:如图所示的周期为T的三角波在的函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2307.jpg?sign=1739302992-o9878jgWdFeKjZtgVCq2q2arFeg8MnZS-0-7ad272b2cab8dc9462a6e9c032612bc3)
先把f(t)延拓成上的函数,再据题意,还必须把它延拓成奇函数,于是a0=ak=0
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2309.jpg?sign=1739302992-dFPOEYVa2Y2bOq3snEpGzvII1i1b3igo-0-37b4c6140c733b65cb7601059015a0db)
则
9.将f(x)=sgn(cosx)展开成傅里叶级数.
解:因f(x+2π)=sgn[cos(x+2π)]=sgn(cosx)=f(x),则f(x)是以2π为周期的周期函数
又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2312.jpg?sign=1739302992-Bz4GWlgPKiGyancRRt4azFLcqeFQ5U8x-0-c7224ded34fdb6b4d61699c3300579c3)
则f(x)在(-∞,+∞)上可展为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2313.jpg?sign=1739302992-r4CxbrP0DJwm37DPC4WegbhjUBPvAinZ-0-abcd57101bb85850a8daefa3c29cd4dd)
10.应当如何把区间内的可积函数f(x)延拓后,使它展开成的傅里叶级数的性状如下:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2315.jpg?sign=1739302992-1gqT7Hw2J2Yxzy3cjwwPq1LCDNx0vvAn-0-a942928c82fb504df206577fe5831956)
解:因展开式中无正弦项,则f(x)延拓后应为偶函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数a2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2317.jpg?sign=1739302992-Xl1RtbUBphsmA9HOE5o54VFvd1c6WrcA-0-6609d14f5eb0869275e09285e063cf9b)
则
在左端前一积分中作变量代换,令x=π-t则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2319.jpg?sign=1739302992-ScaGACAHXm4WaAbfLdg21Ck0QXU4LXA1-0-90c9c8f60ac0ec7ee78ce7410105aca0)
要使上式成立,则必须当时.有f(π-x)+φ(x)=0即φ(x)=-f(π-x)
于是就求出了延拓后的函数在内的表达式为-f(π-x)
又延拓后的函数为偶函数,则它在的表达式为f(-x),在
的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2324.jpg?sign=1739302992-X4PPfP7dd752IM3sL6qHmQqSvQ73nEbs-0-dbbceb907f0b7ea47ef6c4b1f5b2b240)
11.同上一题,但展开的傅里叶级数形状为:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2325.jpg?sign=1739302992-jpyOEjIdFxNQ3fhz90GvyXmftj09rJWc-0-25f6c8eb414667db66c173afdcab6c13)
解:因展开式中无余弦项,则f(x)延拓后应为奇函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数b2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2327.jpg?sign=1739302992-DK8micKVPATfF5aoXrWtikVDvzyv1Ius-0-3c95b2a29a8e1fafa22a283ffb3a0583)
则
在左端前一积分中作变量代换,令x=π-t
则
要使上式成立,则必须当时.有-f(π-x)+φ(x)=0即φ(x)=f(π-x)
于是就求出了延拓后的函数在内的表达式为f(π-x)
又延拓后的函数为奇函数,则它在的表达式为-f(-x),在
上的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2334.jpg?sign=1739302992-X0wGrxY8TZbNgpGjTzpKMDeIESPWzBRY-0-48ee84b1f6b1ecc8896c730742368ea9)
12.设f(x)可积、绝对可积,证明:
(1)如果函数f(x)在[-π,π]上满足f(x+π)=f(x),那么a2m-1=b2m-1=0
(2)如果函数f(x)在[-π,π]上满足f(x+π)= -f(x),那么a2m=b2m=0
证明:(1)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)=f(x)
则f(x)在[-π,π]上可积、绝对可积且以π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2336.jpg?sign=1739302992-PcESJLnLJvSgJNhxBm5lr0oYiUL4tS1i-0-5b93cde9672c94199151fdc7d2e2c1c1)
于是
从而,得a2m-1=0(m=1,2,…)
同理,得b2m-1=0(m=1,2,…)
(2)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)= -f(x),则f(x+2π)=f(x)
于是f(x)在[-π,π]上可积、绝对可积且以2π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2339.jpg?sign=1739302992-QbFCcVn6gXersQkyru4PdM4wM8MPRNHW-0-9eb88829e3f2490b52e7b558829e6848)
于是
从而,得a2m=0(m=1,2,…)
同理,得b2m=0(m=1,2,…)
13.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2343.jpg?sign=1739302992-akXiJWk09wtblJjZcqvfbr5gB0bZSiKT-0-624d2c6c7d7796fd1e90a2c1ff41c4ec)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2346.jpg?sign=1739302992-Jkne1iBaJBJbSJGcPUVhc2EJ1eFmnvlH-0-357dac9d9564a9a4d35590bfeebab89b)
同理,得bn=-βn(n=1,2,…)
14.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶系数分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2350.jpg?sign=1739302992-sHHidE1aTxSrtCH26mdhCBiNffIm7B8S-0-e2995f21e19a3ecf874a3348a82292a6)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2351.jpg?sign=1739302992-vS3cMgwpzrtrPIQm9AWPFFT97WqMc1d9-0-22be1393d65494e9260df6e31f012240)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2354.jpg?sign=1739302992-7FoEAB9dtIpOGZH4hM7jaZkMVe4gK8da-0-d7d85b1d2ef26ff1e54bcc805297dfc6)
同理,得bn=βn(n=1,2,…)
15.设f(t)在(-π,π)上分段连续,当t=0连续且有单侧导数,证明当p→∞时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2355.jpg?sign=1739302992-xhBIUvcb94DLAFXhNEyXdUKcQ92fXgZQ-0-a43fb3eab15647f2d5690e6f0dd8aa03)
证明:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2356.jpg?sign=1739302992-Dxsti4trJ7iIJejsPTop9ZFLMjFGmiBM-0-75f2d08ea7e30ae386ff4ab361003228)
在右端前一积分中令t=-x,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2357.jpg?sign=1739302992-hwidlQAJ5lfQvEgZzmoie7AbuPdKb5GO-0-089afa1fd0dc7eefae81c982aaf19a09)
代回原式,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2358.jpg?sign=1739302992-zEJtRsUNvqTxcudvO8STgHA7eM6e6jJD-0-b03af67733113083090645c38a758892)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2359.jpg?sign=1739302992-C7t8Xjz2nhxQrvxvzpIMJmt3hkxrKxT7-0-232304f38a2017d8891def85193967fd)
下证
因
对于
因f(t)在(-π,π)上分段连续,在(δ,π)上连续,则
在(δ,π)上分段连续因而可积,则由黎曼引理,得
对于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2367.jpg?sign=1739302992-jfMUjn5YWPUgULTNcQG2dldbJzLzEUjQ-0-cdf008d54bd65771ed8e5da85821ee56)
因补充定义,t=0时,函数
的值为0,则
是[0,δ]上的连续函数
又f(t)为(-π,π)上的分段连续函数,则在[0,δ]上分段连续,因而可积,则由黎曼引理,得
因f'(+0),f''(-0)存在,则存在
补充定义,t=0时,函数值为f'(+0)+f'(-0),则
是[0,δ]上的分段函数,因而可积,于是由黎曼引理,得
综上可得,当p→∞时,
§2 傅里叶变换
1.设f(x)在(-∞,+∞)内绝对可积,证明在(-∞,+∞)内连续.
证明:对总有A',A'',使得ω∈[A',A'']
由于
后者收敛且不含参量ω,这表明积分在[A',A'']上一致收敛,据一致收敛积分的连续性,得
在[A',A'']上连续,从而在点ω处连续,由ω的任意性,得
在(-∞,+∞)内连续.
2.设f(x)在(-∞,+∞)内绝对可积,证明
证明:由f(x)在(-∞,+∞)内绝对可积,得对于任给的ε>0,存在A>0,使有
设f(x)在[0,A]内无暇点,则在[0,A]中插入分点0=t0<t1<…<tm=A,并设f(x)在[tk-1,tk]上的下确界为mk,于是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2387.jpg?sign=1739302992-moR7A9jB2BVFB2h1yAcD78I78JuscOz3-0-0e2a04a94c216387128e7a4dcd052680)
从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2388.jpg?sign=1739302992-SuhPl082c4WQT3LI8wjLfoZHDxAYs1Sa-0-a9b9f1e0f3fbc6bc5380cbad5bfda4e2)
其中ωk为f(x)在区间[tk-1,tk]上的振幅,△tk=tk-tk-1
由于f(x)在[0,A]上可积,故可取某一方法,使有
对于这样固定的方法,为一定值,因而存在δ>0,使当ω>δ时,恒有
于是对上述所选取的δ,当ω>δ时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2392.jpg?sign=1739302992-eqGK6REUOaZP5bYfvrLj6HFjMOjch7Lv-0-7b4aea1b7a1440c972dc22b976cf497f)
其次,设f(x)在区间[0,A]中有瑕点,为简便起见,不妨设只有一个瑕点且为0,于是对任给的ε>0,存在η>0,使有
又f(x)在[η,A]上无瑕点,故应用上述结果可得存在δ,使当ω>δ时,恒有于是当ω>δ时,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2395.jpg?sign=1739302992-ciIHwenQmgXUtHvVNhNhrZvjneivtkUW-0-dc766b21d611c2b9fb9e439ee2b28762)
即
同法,得当f(x)在(-∞,+∞)内绝对可积时,均有
同法可证得当f(x)在(-∞,+∞)内绝对可积时,
于是
3.求下列函数的傅里叶变换:
(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2400.jpg?sign=1739302992-CqbIVIBPRnZqyn2pYHmj0Q7RBnW7gEXI-0-8be154eaaf743e39acb8fd6069dada03)
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2401.jpg?sign=1739302992-ANlEuZb2A9agNKHUeVC8cWygpepQzSnq-0-18699db098d94b8a632c9542766f1450)
解:(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2402.jpg?sign=1739302992-l7VCCciXRp5sxrNSRvs9Xni3ypP4MQFN-0-08d4f6fc32918fbc2c36a74d5e7bff09)
因为(-∞,+∞)内的连续函数,则
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2405.jpg?sign=1739302992-oMgIdGEawHMHViXGir16lOG7ycZNWF5F-0-a325c36a368920968e45f6c9d3a1ceef)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2406.jpg?sign=1739302992-UbRgERioRtXlosGb8lp83bOSp1GnhsdR-0-80451287562906a5c92f3e9c309fd0c2)
因为(-∞,+∞)内的连续函数,则