![薄膜晶体管液晶显示(TFT LCD)技术原理与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/520/47548520/b_47548520.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.2.1 三角函数表示法
如图1.11所示,坐标系(x'Oy')与(xOy)的转换矩阵为
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_33.jpg?sign=1738998964-dhfoENYyHKtDbyUpYWuwCBX7A2yqJBde-0-b719047b7826addfce6d5e63a6c0ab90)
(1.9)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_34.jpg?sign=1738998964-A0iThiwtN4WKDohzTzPldAT792CM6y7W-0-dd3025728624027a67ce16a1a3ffb813)
图1.11 椭圆偏振光各参数间的关系
而电场矢量在这两个坐标系之间的相互关系为
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_35.jpg?sign=1738998964-ujn1g2jLjx4GINk8kgrIP88zcQn0OZ6x-0-1fffdee844ff850abf0416066f03cfc5)
(1.10)
设2a和2b分别为椭圆的长轴和短轴,则(x'Oy')坐标系中椭圆的参量方程为
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_36.jpg?sign=1738998964-myzRoubRsKEQA15gdQaTtzUEFP5q4TqE-0-52e5310bd98688d9867b1db8337d36c9)
(1.11)
式中,正、负号分别对应于右旋和左旋椭圆偏振光。显然,由比值和角度
两参量就可确定椭圆的外形及其在空间的取向,因此它们是椭圆偏振光的两个基本参量,同时也是实际工作中可以直接测量的两个量。下面再求它们和
及其相位差
的关系。为此,利用式(1.11)与式(1.10)的等价性可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_41.jpg?sign=1738998964-diNTkroggS7QgtDYZayDJygrY4PvAI2Q-0-e42252a01e4003e098ac9cf25128f78e)
(1.12)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_42.jpg?sign=1738998964-BOQw8nOEoyhDZI4QWTd1GDNrlAVToSi0-0-09b13a6a0809fc6201a01346b04a05d0)
(1.13)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_43.jpg?sign=1738998964-HXJ9Q04ekpNAs7LJRDvtMtTAJZVd39LS-0-9ff338f59cc014adcf0450609002759b)
(1.14)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_44.jpg?sign=1738998964-6EXjJQf6zTgT7JcBKSqFBRT2OlksHE0b-0-dd249c64f32254177ad2c949bc5efc1d)
(1.15)
式(1.12)和式(1.13)平方相加,式(1.14)和式(1.15)平方相加,可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_45.jpg?sign=1738998964-QveJSISoTwWDCJiN8HZ5RUhmojO8bbT2-0-4cdcebbf0358094dd9a222cf7234347f)
(1.16)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_46.jpg?sign=1738998964-m4oelwmCOx7GFjdDC0HRJPwWLbN2aRvr-0-ffc24954e54304748f1fd5655984c8fd)
(1.17)
所以
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_47.jpg?sign=1738998964-O1688SfmuCIY4c8Ugi07zRqhMyEb5gew-0-a558231ccf66f57e211fc9ee0b5e6763)
(1.18)
式(1.12)和式(1.14)相乘,式(1.13)和式(1.15)相乘,然后把两乘积相加,可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_48.jpg?sign=1738998964-OEhiuInfBm7PToyrar7DdOli436X8pQQ-0-f78518522e001d605b1d3b2076fd8dc8)
(1.19)
式(1.12)和式(1.14)相除,式(1.13)和式(1.15)相除,可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_49.jpg?sign=1738998964-AViRjgFMbTs54tmRPj2hG7peODjj67kU-0-ba41db3cb93f6eab905e865fe067e2c1)
(1.20)
式(1.20)交叉相乘,则可求出的表达式:
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_51.jpg?sign=1738998964-2ZBroe9Iflv6adKHiOQij6QJhSYDbdMU-0-6efef7b0732ecee2768929a191f8ed54)
(1.21)
在实际测量中,比值较之
更为有用,且在计算上也更方便,故令
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_54.jpg?sign=1738998964-mjiJEQtSVVURuYIqGqugWDcOnEWrd1YY-0-90a8493bb97c945a295ea6dd4d2b68bb)
(1.22)
于是式(1.21)可简化成
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_55.jpg?sign=1738998964-CQaRXlTCIhYPGAi0NSV36WyzlfPi2pTO-0-cb3a1ece3622d5803037169d94fa158c)
(1.23)
而由式(1.18)、式(1.19)可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_56.jpg?sign=1738998964-7GTRXC3dMxHMiuUJktlHmUiTipoKdJjV-0-ed79f23b4042e5fc409cc190043fe608)
(1.24)
令
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_57.jpg?sign=1738998964-Toxk8HihoM3J1uLs7Wbi8dOHuxDiS7NG-0-a3ee86f364ffa94cdf935f2c3c4de6f4)
式中,正、负号分别表示椭圆是右旋还是左旋,于是式(1.24)可改写成
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_58.jpg?sign=1738998964-xrbJ9cBLXGHCuLeKfXV7CrALUnnuY1dW-0-74dcbba26a9546cad1167ff221b38bcd)
(1.25)
由此可见,若测出的实际值,则两偏振光的振幅
及其相位差δ就可由下面的等式求出。
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_61.jpg?sign=1738998964-yih5yjPHxsaj2ZMIss8P5EqF0FCw8a7R-0-9cf79aaa16d22d9ca11865294e67e39e)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_62.jpg?sign=1738998964-NRedxkXRAtApxnZNykWMgJocuKpDfy3N-0-3e5a57108734c2ffd0f257122bfb4591)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_63.jpg?sign=1738998964-jAR06cXH5Kw86U4soKg7RGhkdmDMT56q-0-b0ff23bd446bca3b6484310c0d59756d)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_64.jpg?sign=1738998964-zUvj7MY9oSQhj361mclLvFVpfH9Sl0sR-0-7c67f0c1bcef1d105f876d3670cb5bf4)
(1.26)