![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§1 曲线的切线与曲面的切平面
l.a曲线的切线
考查R3中的一条参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0004.jpg?sign=1739501129-WtJtKmTNaUJkjUUThcCfVkujuAfNIr1W-0-f51f7985c69addf7c03e1a720b12cee1)
在这里,我们假设函数x(t),页(t)和Z(t)都在区间J连续可微并且满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0005.jpg?sign=1739501129-OvIgSkGRLQmwCsnE1iDDO2ezWorkstfX-0-223c4691d9dcafb7df9e17bb631a98d8)
如果把从原点(0,0,0)到点(x,y,z)的向径记为r,那么参数方程(1.1)1可以写成更紧凑的形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0006.jpg?sign=1739501129-ir4k7CljUciw9cTfkKqu3JzzdvwrfFVs-0-859c24fc8339a945163d4e2ac26110d6)
这里r(t)=(x(t),y(t),z(t)),是连续可微的向量值函数,它满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0007.jpg?sign=1739501129-AqJ14cTlz5i0vaa4xQsWHmt6VG4YAV8f-0-0b13e658bcc91b16e770289d41ce5bd2)
当然,(1.l)l与相应的(1.1)2本来是一回事.在以下引用时,我们就不再加以区别了,都编号为(1.1).同时,也就把(1.2)1和(1.2)2都编号为(1.2)。
设P0是曲线(1.1)上的一个定点(其向径=r(t0)),而P
是同一曲线上的一个动点(其向径=r(t)).我们来考查沿着割
线P0 P方向的向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0010.jpg?sign=1739501129-qyGBhNpgI5XdSnuDW2SyOpUHqc8Hrgbc-0-a039a39456343cd91510fb22536aa1a0)
当t→t0时,割线P0P的极限位置应是曲线在p0点的切线.这样,我们求得曲线在给定点沿切线方向的一个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0011.jpg?sign=1739501129-c16MxjIcCYKM3tTFuScxCrjZFXTsFzt4-0-4a6c811e19e6f305dc09d1672e743c6f)
于是,曲线(1.1)在P0点的切线方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0012.jpg?sign=1739501129-gronD2laF8vwyukKWdhrxXBF2h9oNk2U-0-2f7df0650f957410448161f0b8d29c0f)
这里x0=x(t0),y0=y(t0),z0=z(t0).
显式表示的线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0013.jpg?sign=1739501129-c61QzodDDiSPV49r9iDKLOBhQwc2GYhY-0-2e0d8024d7bcf54eb0a403e349ef40bf)
可以看作参数曲线的特殊情形——以工作为参数的情形;
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0014.jpg?sign=1739501129-iZher301tMVcTeKMclVQozqodvgguapN-0-e9cc0a3ba2bf3fe1dcbfe94e7c8c4d06)
对这种情形,切线的方程可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0015.jpg?sign=1739501129-eJ34RW8kjKADz3dkLEDB03OToF3k319z-0-ea8d1b71a09da2987d4d4b59469f5c61)
或者
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0016.jpg?sign=1739501129-fHkEciJG4p2evhgA1CYeZW4W5KHko4C4-0-b92ba17b79cded2c30d4d7868516d6d5)
这里y0=y(x0)z0=z(x0).
再来看由隐式给出的曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0017.jpg?sign=1739501129-r5N0UqDUTlpZ1T0A5yV2DHwv4MskeSi3-0-c93030cf4125c7d6627ec407199e4e93)
这里假设F和G都是连续可微函数,并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0018.jpg?sign=1739501129-pqqGDEKqQZboyhCDeplmB64dVp9OJYLR-0-840b346fd14b75f387990d161779df29)
于是,在曲线(1.7)的每一个点(x0,y0,z0)邻近,我们总可以解出某两个变元作为第三个变元的函数。这样把曲线的方程写成显式形式,然后套用(1.6)或者(1.6)'写出切线方程。但以下的讨论更有启发性:我们来考查方程组(1.7)在点P0(x0,y0,z0)邻近的一个参数解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0019.jpg?sign=1739501129-fUz697yYiVik3UoouqoPJe3LEPMYetZW-0-b957f242c708e2d5dfcc8d7166ce3a12)
——这样的参数解一定存在,因为显式解就是一种参数解.把参数解,x=x(t),y=y(t),z=z(t)代入(1.7),就得到恒式等式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0020.jpg?sign=1739501129-RyvG6hmnEV8zfoWn0PrVhb2V6DR7vWbQ-0-cfaa01e890bf266d75705932e514d253)
在t=t0微分这些恒等式,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0021.jpg?sign=1739501129-NRgfCpuco0xrAPVYMyeo4ZGj6aMuL5rs-0-288a43f6230ef776a711dd4ea884ce5d)
我们介绍一个很有用的算子符号:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0022.jpg?sign=1739501129-zdE6GFi2dM7w7ugBDs25qfveM9c68eJB-0-39026002623a74baf31cf06abf8ac619)
这里的i,j和k分别是OX轴正方向,OY轴正方向和OZ轴正方向上的单位向量.这样定义的算子▽,被称为奈布拉算子(或奈布拉算符)。在点P0处,奈布拉算子▽作用于一个可微的数值函数F(x,y,z)产生了一个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0023.jpg?sign=1739501129-UWFEgbze1xLuDCGgkqHoyeaYdmtWiSiP-0-50765ac564c93a95976866f9dd6a791b)
利用奈布拉算子可以把(1.9)式改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0024.jpg?sign=1739501129-tntR2ekbAp4PDq1RVpbasZ4BZV2xvjlr-0-124b1972bf9dce9f6d2eb161923ba817)
这就是说,曲线(1.7)在点P0的切向量与两向量(▽F)p0和(▽G)p0正交.因而这切向量平行于
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0025.jpg?sign=1739501129-3DBHUFgziwIdiDzOJkSadpcOBZ6PSXfa-0-e228f8e8b13d3c76b0adbb6c8fa86e53)
据此,我们写出曲线(1.7)在点P0的切线方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0026.jpg?sign=1739501129-Qgi4XQPPLhbnSUeCbQqCuAk8uhmnV1jb-0-29144c2e8c82ac0f218250914312f920)
平面参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0027.jpg?sign=1739501129-YR0UaxeqwwOTojVx7dtFwo3IbROT8jrx-0-35b5ab6e6a04130deb34ed4d0676d1c9)
可以看作空间参数曲线的一种情形:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0028.jpg?sign=1739501129-ArPvSoeQBfR1COUzBh3SgTp4ciqzAzQT-0-a7a723daa21ea318557774e1812d35b6)
因而,平面参数曲线的切线方程可以写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0029.jpg?sign=1739501129-cknpkWw3qJSMUMnIQOtYhMECg6MFdnoJ-0-2b41b4943c307a86a148580de46a131e)
类似地,平面显式曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0030.jpg?sign=1739501129-Lmkl0zen5PYrLrfpodkJOoWc3NVrWzuw-0-60748f0e317fe83c77c1c857633963ec)
的切线方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0031.jpg?sign=1739501129-c48vANrib0dw0snbqz7zTGdwmeYfiHMd-0-8f3faabc014540f45bc2a9bfbd0de76c)
——这结果当然是大家早已知道了的.
隐式表示的平面曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0032.jpg?sign=1739501129-6OyPt8yNxc8mLpvxQxGVwZSmDwQ63dBe-0-99492e704eefe475ffad030a3a41dac7)
可以看作这样的空间曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0033.jpg?sign=1739501129-UqyosBvp4LJeXx5tJDqWFEMgCKw8Ra90-0-a22963541453aeac19ca37dccd34c545)
这空间曲线在点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0034.jpg?sign=1739501129-zw3usCcIQgrmfEi4aFMTEFJnFEa38NzD-0-dcc4d0a18bdf09a8e2f1df88bf98e322)
的切线方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0035.jpg?sign=1739501129-WXMJ7VxBxBljGCq9c3WqterfaBHpA75o-0-62cf44724e65ee6ee44688c47859e29b)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0036.jpg?sign=1739501129-EtzPZncnYFc1J09xPXS69zDWnCQIco6v-0-38a832602f44130e38cbe2a5fd36973e)
1.b曲面的切平面与法线
空间R3中的一块参数曲面表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0037.jpg?sign=1739501129-D4Q8BOXQR8AqOA2xh87BM03sgKEYizza-0-d0a8fe2be60bf261b1a0f22e044f50a1)
这里,设△是参数平面上的一个开区域,设x(u,v),y(u,v)和是在△中连续可微的函数,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0038.jpg?sign=1739501129-jU7JU8EfBY6eXHCEP6wDXIXv9QolEVpV-0-ddcd90a2b9450c5bd0a7df81612d2500)
参数曲面块的方程(1.11)1又可写成向量形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0039.jpg?sign=1739501129-M7MT7JKfuuci8XvS1v1TgqAizjvA9U4W-0-41fe3378afc9a51c13365e16b50cb1a1)
而条件(1.12)1意味着
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0040.jpg?sign=1739501129-1AJbupu0YYm7s89MYL9RQcpA15DBsKxD-0-d85b35e185d3e7becd42a092f248ef4e)
在下文中,提到(1.11)时,指的就是(1.11)1或者(1.11)2;提到(1.12)时,指的就是(1.12)1或者(1.12)2。
设P0是曲面(1.11)上指定的一个点,其坐标为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0041.jpg?sign=1739501129-yumMyYFoRn7XbAacxMbmgqzYWhmu2jkr-0-8771b2dce88ee6843ece2ce369f4381f)
又设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0042.jpg?sign=1739501129-0yOAHVBLzM2mozMehIjQyircxRWcsmnz-0-c0c8c4c181fbac3d7d08475d0c7e07e9)
是参数区域△中的一条连续可微的曲线,它满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0043.jpg?sign=1739501129-lUuM17IE4O32b6prZ1vac0txspnS2U2a-0-6357ef26844152466ce5f61b944c4239)
我们来考查曲面(1.11)上经过点P0。的连续可微曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0044.jpg?sign=1739501129-jQNyUT3ZrZjA1cUOUc9wxgE747zc2eOf-0-9ccd602b3f1e8b92ce06823032bf8de2)
将上式对t求导,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0045.jpg?sign=1739501129-L45fwQaVJoeoHSmVuy3kN9C7qxOzSVh6-0-52e8d4cea67e56fd0db4ca1dad527b12)
由此可知:任何一条这样的曲线,过点P0的切线都在同一张平面上.这平面通过点P0,并且平行于向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0046.jpg?sign=1739501129-KQcHPnDe71IlgdGrRjAZnlDCOx9GT3LV-0-1c9b29e4e1cfd17046e610457d9e728c)
我们把这张平面叫做曲面(1.11)在点P0的切平面.切平面上任意一点P的向径
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0047.jpg?sign=1739501129-UWlLjbn5RJKtoyP2USVMZstp7IRfK9ez-0-9d95f584c49fd85e8ab6d2d415799158)
应满足向量方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0048.jpg?sign=1739501129-eGpD2VxvSS5ir36bSScGqcORIODpqR2V-0-597781443c4882a4d172628c1b5b61e0)
据此,我们写出切平面的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0049.jpg?sign=1739501129-UXmTkLce6yamEinNNWl8x7xcDkJB99wO-0-699c1e9cfe3dfde1701bc411a9c0faf7)
过切点并且与切平面正交的直线,称为曲面在这点的法线.根据上面的讨论,我们得知:法线的方向向量为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0050.jpg?sign=1739501129-MArUnqQFSxs8bZvJKH6z9zDQtmc07KkQ-0-e2f26dc9c53126d54bac4d62a9893955)
因而,法线的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0051.jpg?sign=1739501129-N9IPqaexzgFOANQEpZzTL8ch9h3WQHhi-0-f6706bd21c80492e2bf682b2f6234360)
显式表示的连续可微曲面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0052.jpg?sign=1739501129-eYyeIM3b4kSu8v81iZq2ICyN0SkjKunX-0-e2a72ef2444abcf6e63a64219c4263e9)
可以看成以(x, y)为参数的参数曲面:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0053.jpg?sign=1739501129-VhOoUsUvuG4WMmTWhiNZv1pQF6oHUAW6-0-783b52c1e40590691136095f500eb9d6)
这曲面过点P0(x0,y0,z0)的切平面的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0054.jpg?sign=1739501129-APJkibX8F1LbFeLXijDbNLvbnZwEFo7y-0-7f069eba84703a3dbd1dabd158034f10)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0055.jpg?sign=1739501129-sr4s8p4dZM2wWWeYSVXJqCdfS7TdjhUQ-0-c0ae3b1831308028f5324541aa03805b)
曲面(1.13)的过点P0的法线可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0056.jpg?sign=1739501129-0zc9jbbbXqZ1kVYFEzOHkgQMDMYtX5Tv-0-7aaf5870f531e698d597306b560a3a54)
再来考查隐式表示的曲面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0057.jpg?sign=1739501129-hrArznLwONKBKxUnG0V0MH1WmOVcAMFF-0-dcdb6512efb86d32fd537bd686175083)
这里设F是连续可微函数,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0058.jpg?sign=1739501129-MrsSURza2qHDYP0ZZ2eq9yvJUFwllk4h-0-450535691a926eb4ea49f56b8d484c3b)
在曲面(1.14)上任取一点P0(x0,y0,z0),考查这曲面上经过这点的任意一条连续可微的参数奋线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0059.jpg?sign=1739501129-VbfpsCB2tnRLKwx2R9lbbLVS4GQFL7Re-0-1cac8ce9bf294ebf7fcaa550b8b51da4)
我们有恒等式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0060.jpg?sign=1739501129-2so2o0lRqL1boBTR3GRZ9Mh38rno5m8b-0-540ea3862148af695edf1a62323b8ede)
将这式对t微分,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0061.jpg?sign=1739501129-UsAym0uAvtPip4mAv55BPqVPfaZxz7Jq-0-975df6a22c87b4951a88190ff3d60f7c)
由此可知,任何一条这样的曲线,在点P0的切线都正交于向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0062.jpg?sign=1739501129-MthtSVUliSROqed6mt8ALGvDXOvedPpu-0-b2ab5940cc677cad49941a3002d0a473)
这里,为书写省事,我们记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0063.jpg?sign=1739501129-NLUVt2VleNQlpuQW5bMm24zjL26x2Okh-0-371443beef88da499081c6a06fe2c781)
通过上面的讨论,我们写出曲面(1.14)在点P0的切平面的方程:向量形式的方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0064.jpg?sign=1739501129-ouC3JoYrtKMlHVY4039xpnWNVaV8CrPY-0-0da33c89b7f3c3a71c5f10f7fc6c7241)
坐标形式的方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0065.jpg?sign=1739501129-rHFtu0py95iNyPH2uegjRnASO1Y35r6v-0-8bb4da304c028c83ad38e2d4b79c2a4f)