![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§2 曲线的曲率与挠率,弗雷奈公式
曲率描述曲线弯曲的程度.挠率描述曲线偏离平面的程度——挠曲的程度。这两个量对于描述曲线的形状来说,具有决定性的意义。
2.a几个引理
为了以下讨论方便,我们先介绍几个涉及向量值函数导数的引理.
引理1 对于可导的向量值函数r1(t)和r2(t),我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0066.jpg?sign=1739501595-49E1t5B8UYXukyC9zo1JyruVJsLm15uq-0-eb7812b91de99c232a3a16dd5f49d3fd)
证明 用坐标分量表示(r1(t),r2(t)),然后再利用数值函数的求导法则.请读者自己补充证明的细节.□
引理2 向量值函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0067.jpg?sign=1739501595-4nvWTdhfxPhrNJCy04E0bNe7rxcGVLFx-0-a3ab4e29004619bc8142de588612f0af)
保持定长的充分必要条件是:r'与互相垂直,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0068.jpg?sign=1739501595-EKAYpYYUCpCOhuiVen8oUDoVlvBGsaUc-0-d2e7879b7d66e78db9def147b34c311a)
证明 我们约定记r2(t)=(r(t),r(t)。显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0069.jpg?sign=1739501595-xlbW8MIWCPZd13paZFWdPBGYUpN3qQwv-0-ceb08b8c8db5a9d0971804a7b3fcecae)
根据引理1,又有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0070.jpg?sign=1739501595-ec7nRwhhz4PL2PMPqKvZbgrMOUUnPnT6-0-ec0a236eb48832f9c649f46e9a78b438)
由此就可得出所要证明的结论.□
引理3 设是单位长向量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0071.jpg?sign=1739501595-T2o9CpCg6o4aOspkAqwgntSbOZOtO4sI-0-90f495ee94441c80e6d76ad0a0c31bf6)
则r'(t)在与r(t)正交的方向上,它的模||r'(s)||表示向量r(t)转动的角度相对于参数t的变化率.
证明 我们用表示从向量r(t)到向量r(t+△t)的转角(图14-1),则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0072.jpg?sign=1739501595-RrRtp6sen1VxfIg8qzDkvZWiTZyphSRz-0-550636ae9eec802cac3fe8521f303d13)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0073.jpg?sign=1739501595-ZZWasBxwnKOihxjGxI5Wryw5BFVGBgbY-0-031de3637fa6509748e16e7e4ad1228a)
图14-1
于是有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0074.jpg?sign=1739501595-J344b1KeCPWFZ7pMh0QEAbRnqOLsYwto-0-9a569fbff0da56c709ebdd02b42fbaed)
2.b自然参数,曲率
考查曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0075.jpg?sign=1739501595-wA8kJg4rtR0fNbJ1eeyMbKSWdYh8KgSP-0-bcf4d51eadcc4a0e247a48aec0e761ad)
这里假设连续可微足够多次,并且满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0076.jpg?sign=1739501595-W4YBFR3THd7tEsEd3pHe9IXMK0LsrSQl-0-458858c5f25d500bd9acdf8151d72c22)
曲线(2.1)的弧长可按下式计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0077.jpg?sign=1739501595-FNYwMIQcl8EmSwdfaCWUWJcZtWJiRQJ6-0-c5a189d319cd6f0b94c52ed2f6946fd4)
这里的t0是量测起始点的参数值.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0078.jpg?sign=1739501595-u6EnLo6un18M0UymlfR99wiVcMZ2P41D-0-83699e7c7644ac0147835f195ba5c6f3)
根据反函数定理,可以断定t是s的连续可微足够多次的函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0079.jpg?sign=1739501595-iZdiyrU8pCWy5fcI1EcCHdI3yhE7X3mc-0-d3e2f6871d81530cd79539089c277972)
于是,可以用弧长作为曲线的参数,把(2.1)式改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0080.jpg?sign=1739501595-Gcg5loHOooDE0gTffeXAdZ3DMary1aXg-0-9da8d4944f5892b54721552da9797679)
以下,我们把弧长参数s叫做自然参数.为避免记号繁琐,对于不致于混淆的情形,就简单地把(2.3)式写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0081.jpg?sign=1739501595-0usAMTWdSTp4LSJzrpS97du7MzXO7OuZ-0-b33189b7b79001d99e0b6f96d9e09ef8)
在本章中,我们约定用圆黑点“·”表示对弧长参数求导.于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0082.jpg?sign=1739501595-Gr9iv2fGJokLMR4ZxGjNHTMf4gHaMj1k-0-8b7be7a5b797c6fe63997266a2aaef67)
由此得知,r是一个单位长向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0083.jpg?sign=1739501595-tmOcHMmaLv17Lj1HjF5SUBN91IAglKlz-0-c56a0fcfb91c29c766a56a520bdf2d05)
于是,r(s)是曲线(2.4)在r(s)处的单位长切向量.我们约定用记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0084.jpg?sign=1739501595-pey3hUnQRyMSCLOdnj6ZmwU1HfzcB79S-0-ae1da8887e92b582839a4ae255837338)
表示这单位长切向量。
请注意,为了讨论方便,我们约定把切向量看成自由向量,因而可以把各切向量的起点都移到坐标原点.读者以后逐渐能体会到这种看法的好处.
将T(S)=再对s求导,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0086.jpg?sign=1739501595-GuCotf4EtkEIrxmpTe8k6kqL9O2CAxGk-0-7f00189b44ebec3c48f8165724e73a49)
既然T(s)=是单位长切向量,那么向量
就在与T(S)正交的方向上,并且
表示切向量T(S)对弧长S的转动速率
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0090.jpg?sign=1739501595-3V6fg8iZcBhPHC0CQKak8Z1fH994BIGk-0-32ed90796983d1833b0be782bfd24346)
——请参看图14-2.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0091.jpg?sign=1739501595-ZSJKnNFvbucoPi4PS4k8jp4RCPWFKzLK-0-de466fabe041656710eae43799c3a2ff)
图14-2
我们把切向量T(s)相对于弧长s的转动速率叫做曲线(2.4)在给定点的曲率,并把它记为k(s)于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0093.jpg?sign=1739501595-XwpWPxJOwcXq8GMoXjkDXH7oM4OKXDfW-0-13abae2ab66d414925d6093f805595cd)
曲率K(s)的倒数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0094.jpg?sign=1739501595-EESSN1QYPl2CgSxGRKNCxGPRT4bYUWjn-0-7fd5ac2b98ac52d4763b6ec533836ba9)
被称为曲率半径。与κ(S)一样,曲率半径ρ(S)也表示曲线弯曲的程度。只不过ρ(S)越小表示曲线弯曲得越厉害。对于κ(s)=0的情形,我们约定ρ(S)=+∞。
例1 考查圆周的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0095.jpg?sign=1739501595-UR7Aw55X7sWbf3O7zGNgCVfSnXF18SWM-0-e4b23a45bdfc65c2305737e3f547c4dc)
换成弧长参数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0096.jpg?sign=1739501595-zfRbC3SS8pkiDQBlUqHRuDbBpuizELIl-0-e29da2a033b0a2ba355e7975ae20c980)
圆周的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0097.jpg?sign=1739501595-RQd1qX2pUunkXRFONUx29kcUHoIFq8fr-0-8369fde3b5e1446a58f347070559b81d)
利用以弧长为参数的方程,容易求得曲率k和曲率半径p:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0098.jpg?sign=1739501595-3Z77xUKaLE1XhpebOlb8J9bb0W8LgmzA-0-a874b4c987cec555410aab75127a8101)
例2 某段曲线为直线段的充分必要条件是:在这段曲线上曲率处处为0,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0099.jpg?sign=1739501595-dRUvT2taSH8LCukvUMHDtXHNJLKQhmvJ-0-fc747459918d17b0f60df221560cbb5c)
证明 如果某段曲线为直线段,那么这段曲线以弧长为参数的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0100.jpg?sign=1739501595-THKegoF08Vp3xmvYhE9LrzyknuewyjcM-0-7e9fceb24f287b92f3cabfd60c583bf7)
这里e是长度为1的常向量.将上面的方程微分两次就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0101.jpg?sign=1739501595-DNFXVzykBkfNYaTYsYSoqU3Mci9ShOBI-0-e67988e6b028cf1f246aed2c026aeede)
因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0102.jpg?sign=1739501595-rlAy6QaAgGWeofxf74RDybHLKK8JAKEC-0-aa787d6a3b9ce54fe3866cd1f1ec8f5c)
这证明了条件的必要性.
再来证明条件的充分性.假设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0103.jpg?sign=1739501595-ylhE67B62DA7UUWlo0eAYLo9bh0Grf84-0-71a051247a7c378f1d0c1cfc53c400d2)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0104.jpg?sign=1739501595-9B3DiJcDTiz7y9ASRHsNVpIwBT50nl1A-0-23a192dfeb3be0e49018f73ffad26c72)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0105.jpg?sign=1739501595-vadCQ6MufcdxPb34eVMPH4Eaq4dzp7l6-0-e574bd4aff808c8e36716e9ed5d11987)
由此又得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0106.jpg?sign=1739501595-rGL6rW8mutP1r1RICj9eX9n7SRKN5ORb-0-58e54a5f0cd2ed547dc33c568ee43501)
这证明了条件的充分性.□
2.C弗雷奈标架,挠率
曲线上曲率等于0的点被称为平直点.我们来考查不含平直点的一段曲线.在这段曲线上
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0107.jpg?sign=1739501595-wHBdEkYf3UCSLGXm0sVrxyATHIppslZU-0-d6b92df62d7637ae5323123f78c43286)
所以可以定义
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0108.jpg?sign=1739501595-qVAgKEohchYP8zEC5HsGm7jVa2ym3fx7-0-256f8c979af3bb099394835ea07a9525)
这是正交于T(s)的一个单位长向量,我们把它叫做曲线在给定点的主法线向量.利用切向量T(s)和主法线向量N(S),又可作出第三个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0109.jpg?sign=1739501595-rncMfTzyDV1j5Fepnk09Zsbh2yGdpX9o-0-e69da4a48249fc09b561b86ffb5cb935)
因为T(s)与N(s)是互相正交的单位向量,所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0110.jpg?sign=1739501595-FGOZQuAijdN9MrENSbbMtpMLrYH2kvhJ-0-52d6c160353e7abc30d5e5bad13b74eb)
由此可知:B(s)是与T(s)和N(S)都正交的单位向量.我们把B(s)叫做曲线在给定点的副法线向量.在曲线上的给定点,由切向量T(s)与主法线向量N(s)决定的平面,叫做曲线在这点的密切平面;由切向量T(s)与副法线向量B(s)决定的平面,叫做曲线在这点的从切平面;由主法线向量N(s)与副法线向量决定的平面,叫做曲线在这点的法平面.
这样,在曲线的每一个非平直点,我们建立了一个规范正交标架{T(s),N(s),B(s)}这标架被称为弗雷奈(Frenet)标架.由这标架决定的三面形被称为基本三面形.
当点沿着曲线运动时,弗雷奈标架也随着运动(像这样的标架被称为活动标架).我们需要考查弗雷奈标架运动的状况.先证明一个引理.
引理4 设e1(t),e2(t),e3(t)是向量值函数,对每一参数值t它们都组成一个规范正交标架{e1(t),e2(t),e3(t)}.如果将
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0111.jpg?sign=1739501595-FtL87HeZiKuTXtV1zkB9WbjEP3KZutn3-0-0a47dc10145ee7d19185a748481322eb)
按这标架展开
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0112.jpg?sign=1739501595-ei11Ee5jKnxb3V8iSl3P1L9RpMgOMhDb-0-7cd50b0362b8b227490a1bf57a89521d)
那么展开的系数应是反对称的,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0113.jpg?sign=1739501595-IalmvcxSm0oeH5PmcHpjAlDaJXAGxlCN-0-834086164b9d95c44fdb2231605dc16b)
由此可知
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0114.jpg?sign=1739501595-kWNRFlpR8zT1UyYG6DhizxUGSctU7liC-0-e5114c7ab7053d6810c7276e41611881)
证明 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0115.jpg?sign=1739501595-Nf1gjGFWkQqNytmw8B0J6Fv1SN7b7ifs-0-78519454dfce7601ba46c66b3acb86d5)
将这式对t求导得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0116.jpg?sign=1739501595-MeBkKKfq8UBsUbMUuHhm6tWlITFS8dWw-0-5a7a305e9bb216ed5268aa4296e0f695)
这就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0117.jpg?sign=1739501595-0x6xykY1JWSUK1L0XR56bqtz4vdUpymG-0-a268df892d62889d16adc1c7a18fc365)
定理 对于曲线的弗雷奈标架
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0118.jpg?sign=1739501595-tICW15ZF6Jg5piqh3Vzn6VNSsOhIpep6-0-eb6e30889cd182d32eca2e8935fe0d0e)
我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0119.jpg?sign=1739501595-4hdgSbYYLghPCnbkUUlOS0DgVGFvWzw5-0-f67c5f48e5577328dd54f93b615b692c)
这里k=k(s)是曲线在给定点的曲率.
证明 对于标架{T(s),N(s),B(s)}用上面的引理就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0120.jpg?sign=1739501595-H1qLLOW8t0UXuqtZLZnda4Hefu3dIpHe-0-906e7cece5f2044c7b4ad5194e98e5d2)
但我们知道
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0121.jpg?sign=1739501595-7Gf4dYrd53SOdyUXPdxncgC9wdLYMmko-0-5559866500d3a25ea379ef90a9c0c340)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0122.jpg?sign=1739501595-mYHxohySkbw2IA83NFz5ioXaPc2fNkyO-0-a468c5542fbf5f9fb52dca0a3950c19d)
我们记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0123.jpg?sign=1739501595-Yb6VaS2b4Csp4NKh7NH2xolA6D1peUWa-0-0e0a33b8775fa5f2c9e34d656a9c7d6f)
于是就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0124.jpg?sign=1739501595-1DFKrLmkGpGbhTf3ndenS12zxQ7RPAwq-0-dc06f97c8bdb4ddae18894e0fb7e3154)
上面定理中所给出的公式被称为弗雷奈公式.该公式中的系数τ被称为曲线在给定点的挠率.下面,我们来说明挠率τ的几何意义.
引理5 设r(t)是一个n阶连续可微的向量值函数,则有以下的泰勒展式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0125.jpg?sign=1739501595-qERbN56FbFteYuOYXXjW9XHMxrpfPqMQ-0-48c0608f2fbacd7507553ef94a492656)
其中的Rn+1(t)满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0126.jpg?sign=1739501595-jSrnpCftIzEmSwRKhYP53YGlrl32hlkh-0-39f9aecccc24a38bd073c83d5a609c35)
我们还可以把r(t)的泰勒展式写成如下形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0127.jpg?sign=1739501595-VKDKVAe7qlHUVGj8yU2oiN6TX1Zd0PRZ-0-0872d8c26c34cce513cadb18b46ee85d)
这里的小o余项表示满足条件(2.5)的向量值函数Rn+1(t).
证明 设r(t)=x(t)i+y(t)j+z(t)k.将r(t)的各分量按照带拉格朗日余项的泰勒公式展开就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0128.jpg?sign=1739501595-6xlfmGz6lP0T9jFCYPv3kkxg43HPOlGJ-0-269616e000a41c2ccc020c7b19ab61fc)
若记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0129.jpg?sign=1739501595-bECBza4VidcKSnTjQcZTOHuyNwKVaoLA-0-5bce2c0a6a95837336b14f1b237992b5)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0130.jpg?sign=1739501595-EWtPdx0T9vKhEJHJ3iQX150wmLhhX1Kc-0-43339b556dc2cca078a551487eb779d6)
利用x(n),y(n)和z(n)(t)的连续性就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0131.jpg?sign=1739501595-5GwyX7m6bL49Z5HvgSfd29miECAQ1wj1-0-7992ab61953695cc5e03eaf7e039a844)
对于用自然参数表示的曲线r=r(s),利用上面的引理可以得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0132.jpg?sign=1739501595-CBU8pINBoOiydn5DDp91OT6eZtPNAFSJ-0-06f1690d91ea462c2d6f63607e25a6a8)
按照定义,切向量T(s0)与主法线向量N(s0)张成曲线在给定点的密切平面Ⅱ0.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0133.jpg?sign=1739501595-R2tMiJ6FjMjJPCsheif3ZqK1XlemM4kI-0-0daa57c4f9c4d4a65d6348409e015b76)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0134.jpg?sign=1739501595-rhV4L2uP3zXwWTBCLtVfvy9FogoYmswb-0-2796283d1b533edf232866b3c0412e1f)
是在密切平面Ⅱ0上的点.我们看到,在给定点邻近,曲线离密切平面Ⅱ0的距离是高于二阶的无穷小量.在这个意义上,我们说:密切平面Ⅱ0是在给定点与曲线贴合得最紧密的一张平面.在曲线上任何一点,副法线向量是该点密切平面的法线,而这样,我们了解到挠率τ的几何意义:|τ|表示副法线向量B相对于弧长的转动速率,也就是密切平面相对于弧长的转动速率.因此,τ表示了曲线挠曲的程度(偏离平面曲线的程度).
例3 设某段曲线r=r(s)上没有平直点,则这段曲线为平面曲线的充分必要条件是:在这段曲线上挠率处处为0,即τ=0.
证明 先证条件的必要性.设某段曲线r=r(s)在平面Ⅱ上,则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0136.jpg?sign=1739501595-M60yhuzeakzFpgXfigwFEGEiymb8OH1q-0-a84ae48879f4ab353d017ee19182b4fd)
都在这平面上,于是B=T×N是常向量(垂直于平面Ⅱ的单位向量),因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0137.jpg?sign=1739501595-Y4QE32avJ9gDDnMJfZctRQzVQPs5nhgU-0-765a9d67aa771699779ba34e532e5970)
再来证明条件的充分性.设挠率则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0138.jpg?sign=1739501595-WyEwwYymc2YOqXLfMQSZ6TJsOu2KWpWS-0-3cd86377b3174524b4049949572a741b)
因而B是一个常向量.考查函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0139.jpg?sign=1739501595-XM9ZS1XBJcyrDojn05wh9xDoG704xfE3-0-117ede2c57f999b38063965bae28df84)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0140.jpg?sign=1739501595-cBoaPh9Ng8Muo2U0WhPqCFjxrhgK7Cyq-0-fd49e0631bba8b5379b86af6728f5cf8)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0141.jpg?sign=1739501595-Bb2AVxdMmDWHcuMj5SStpI0rjAPoJmJT-0-867489ce7a58417ef7d76cb6819696cf)
我们看到:曲线r=r(s)在平面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0142.jpg?sign=1739501595-mTZteOaDthxOlUiqzWCPdjmNFlgeG810-0-d28d1aba873484f67fad8cec355bd1ad)
之上.□
推论对于平面曲线r=r(s),弗雷奈公式可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0143.jpg?sign=1739501595-unVAsKG0VfhebIVK8htVDY9yvKhBgXrl-0-3314291d58baae06d5c90606d26a0428)
2.d曲率与挠率的计算公式
如果曲线方程以弧长作为参数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0144.jpg?sign=1739501595-c4dYbDtvhHsfzf8OEx6Q1MzpmhYdoqSJ-0-db6ee65ab87f5c68c0d4de0a1eb8edad)
那么曲率与挠率的计算都比较简单.将r(s)对弧长参数s求导并利用弗雷奈公式整理求导的结果,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0145.jpg?sign=1739501595-GftUIGTM2WFTIVNL8ySWQ5XR8gNCKXkr-0-a7fd245eb1331ee24c6e66801c401ba4)
由此可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0146.jpg?sign=1739501595-txWAECyUlsEgDhpzW9xgxkfB78kRcaMh-0-b93304d51dc55b53a1b4ab258ba6912c)
在这里,我们用记号(u,v,w)表示向量u,v和w的混合积:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0147.jpg?sign=1739501595-qUr3uC5dOG5QQLtgJSZIv3OKHJtkYi8c-0-fa276a3e1676629d4530de71bea91281)
对于更一般的参数,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0148.jpg?sign=1739501595-f6fkLNjTzlxVRAyrm9gQO7ybm6U6EGOu-0-77ae873c80ff9a7ecaa90856df04a42b)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0149.jpg?sign=1739501595-SitFk4N3cqGUxyGRaFBxFYjHOEV010aH-0-00718b82bdfe4faad16dc59a8154fb23)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0150.jpg?sign=1739501595-mRtlVPUJzkmBTeoxVVAwaDxohQpgSWN6-0-e217f5a2db341970bc9d8688990fa917)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0151.jpg?sign=1739501595-2yL0NquNoFBZhVpKMdu6caJOGiGlTETJ-0-35f2b856f627e2855d1af1b5d36f4286)
于是,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0152.jpg?sign=1739501595-FUpIpfnvzM433W4QdUoKjZX2OzIwh3IN-0-cdaced979d47cd9a961fef394ca1c1d4)
由此得到一般参数曲线的曲率与挠率的计算公式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0153.jpg?sign=1739501595-KeFgvpTramLFMDlLTYLYXh5SLIZHmpy8-0-e0b88bf2d0d59f8a6464b197ffe2bd11)
2.e关于曲线运动的讨论
最后,我们利用本节得到的结果,考查质点的曲线运动.设运动质点的轨迹是曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0154.jpg?sign=1739501595-9b7lu2QrTEsEhmLzt5PpoGX2rUpOUxMr-0-a367b6eabbc5abf3019b47f620d0f224)
这里的参数t是时间.将r(t)对时间参数t求导,就可求得运动的速度与加速度.运动的速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0155.jpg?sign=1739501595-bDTcLVOyVRv6CVmFcVabpPhyKkVDBjlX-0-0a6efa2f11cdb9f7b231d8ed1deb7938)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0156.jpg?sign=1739501595-59xYHyr6mxZmYtZlNDDfZ2CvEewkc6fA-0-650fbf7238c906ad319b6632d11ffae7)
是速度的数值——路程对时间的导数.运动的加速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0157.jpg?sign=1739501595-DXt5AJomCezRyFApPNF23VbuGO97RMNg-0-2edfaacf17aeccfe295333dd956eb085)
这里k是运动轨迹的曲率ρ是曲率半径.
我们看到,运动的速度沿着轨迹曲线的切线方向,其数值等于ds/dt;运动的加速度分解为两个分量一切向加速度与法向加速度.切向加速度沿运动轨迹的切线方向,其数值为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0158.jpg?sign=1739501595-PZrYigtv5tVrkIyKD7CDhhyw1MGIKxe1-0-cc061a785b276db316d141523fe38e77)
法向加速度沿运动轨迹的主法线方向,其数值与速度的平方成正比,与曲率半径成反比:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0159.jpg?sign=1739501595-EU9ZT0TaI3ZaeYHk3Cfi473Q88GA3YBF-0-54ae45c0c38800ede53606e0942fe1bf)