![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
11.3 名校考研真题详解
解答题
679.证明:若K(x,t)在D=[a≤x≤b,a≤t≤b]上连续,u0(x)在[a,b]上连续,且对任意x∈[a,b],令
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2062.jpg?sign=1739304033-IVzyMA5G43UuyfiFe4bLcxojOPPoze88-0-952791ad59ac497dbd4325eb4125a496)
则函数列{un(x)}在[a,b]上一致收敛.[东北师范大学研]
证明:K(x,t)在闭区域D上连续,从而在D上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2064.jpg?sign=1739304033-72LMdhywLt7eOQLoLbBd2VdfU8KQPedn-0-2105dffd6de05b740a52f03544789f15)
u0(x)在[a,b]上连续,从而在[a,b]上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2066.jpg?sign=1739304033-RbjS2RBJaWYEwiUwGbheeIQ2v6V1B5Ps-0-7caba979b89f346f291330ab0ca08116)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2068.jpg?sign=1739304033-rb7AJF6Dw8PHejGyl9MGxg7uG1zdsQoz-0-9ac97a307091e3e5717ae32ebf55fa38)
由数学归纳法易知,由
及柯西准则知un(x)在[a,b]上一致收敛.
683.证明:在任何有穷区间上一致收敛,而在任何一点都不绝对收敛.[华中科技大学研]
证明:(1)对任何有穷区间,使得对一切x∈I有
①在I上一致收敛;
②对单调减且
,即是一致有界的.
由阿贝尔判别法知在任何有穷区间I上,级数一致收敛.
(2)对由于
收敛,
发散,故
不绝对收敛.
685.设函数f(x)在区间[a,b]上有连续的导函数及a<β<b.对于每一个自然数
定义函数
①
试证:当n→+∞时函数序列在区间[a,β]上一致收敛于f'(x).[中国科学院研]
证明:f'(x)在[a,b]上连续,从而在[a,b]上一致连续,即对对
时
对,取
,则当n>N时,对一切
由①式,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2093.jpg?sign=1739304033-tjPS31y14byKIjLr08dadJgzIKCLUXUq-0-3436c765b444f4c3d1bcc038339b9beb)
所以函数列fn(x)在[a,β]上一致收敛于f'(x).
687.(1)求证:在[0,1]上处处收敛,但非一致收敛;
(2)f(x)在(-∞,+∞)内处处有任意阶导数,级数…
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2096.jpg?sign=1739304033-wecZzMU0PTiIfxuSxNuJLDvdAKqheMqz-0-b33f670ec9c7b72bd2ce2499d07fa7dd)
按二个方向在(-∞,+∞)内一致收敛.试求级数的和函数F(x).[同济大学研]
证明:(1)
对均收敛,所以
收敛,
当x=1时,.亦收敛.
所以在[0,1]上处处收敛.
但
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2103.jpg?sign=1739304033-6aJaY32KWF6D4WdaVyllV4UPGu5Q5ZxP-0-4b3008313e2e2a2915a79fa47178c1bc)
所以在[0,1]上非一致收敛.
(2)f(x)有各阶导数,自然各阶导数都连续,该级数逐项求导之后,级数仍是它自己,因而一致收敛,满足逐项求导三条件,所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2105.jpg?sign=1739304033-5q8bTaL18aar326iGPwo2RwYPJSPGz7N-0-ae5f7e5c2419ba26717132df2f8d84f6)
两边同时积分得(其中c1=ec为常数),令x=0,知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2107.jpg?sign=1739304033-cGOouSPZjSn5YOK10yfqum8sX632ayrK-0-29b707c363e1005e3a18a2a5069c822e)
722.写出在x=0点展开的Taylor级数的前五项系数,并指出该级数的收敛区域.[北京师范大学研]
解:令,因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2110.jpg?sign=1739304033-R9cxbmgJbZ0sq3BaRvnGbaJ9vlXnHeJO-0-247f13fb7dc45aaa18e0ace3ff51478c)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2111.jpg?sign=1739304033-MIQeiYYK0NPSaxp6zUIyPJFTZZjBJ59X-0-eb5b1d5bb2aaaaaa239a073f31f4ce35)
则在x=0点展开的泰勒级数前5项为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2113.jpg?sign=1739304033-5REzZcOri9g2mwT8iYEJHAZGrDEW5Ald-0-90882bf1aa6620f09a334c120852d1af)
另外,由于在(-∞,+∞)收敛,因此该级数的收敛域为(-∞,+∞).
729.利用数项级数计算积分
[厦门大学研]
解:注意到
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2118.jpg?sign=1739304033-6xyYZieRReYCppwVWrlGsULCAiXrM8fl-0-210331cc6c963310c584429590bfaeed)
748.判断级数的收敛性并给出证明.[北京大学研]
解:由于故
而
∴由归结原则
因此由正项级数的比较判别法收敛,从而
也收敛.
1.求的收敛域.[大连理工大学2006研]
解:因为,当x=1时,
不趋于0,所以当
x=1时该级数发散.当x=-1时,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2129.jpg?sign=1739304033-lukzTI6X75SVBhxVmxGtslBcwWa4Xry1-0-060cbe3f6676dfe50a3cedcac03ae2c2)
为交错级数,所以收敛.故的收敛域为[-1,1).
1.求幂级数的收敛域及和函数.[西安电子科技大学研]
解:由于,所以收敛半径为
,易知其收敛域为
.记
,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2136.jpg?sign=1739304033-IkDFLFqmVX07ttjwtYATnJNIbu3kjq1p-0-b6e62fca8dbf6f79d32a3628753b67b3)
所以.
1.求幂级数的收敛域及和函数.[华南理工大学2006研]
解:因为,所以R=1.当R=±1时,
均收敛,所以[-1,1]为其收敛域,在[-1,1]内可以逐项求导、逐项求积分,因此
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2141.jpg?sign=1739304033-lANbEksergkVOKjJhKRBivBTFlepT0Dm-0-b95149e407e8fa0c72497b48ac3a8174)
令,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2143.jpg?sign=1739304033-KcotKqg0Lhb9J2UOHc1ZDUObjcqpINb3-0-ecb7c28f997ae2df9496769637dfe5d1)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2144.jpg?sign=1739304033-AfJvSTPpLlccvsR5fl7xJlGPu2HNuGxO-0-19f74bb58580b0bd6451c39ef51a1a92)
1.求的Mac1aurin级数展开式.[华东师范大学2006研]
解:由于,所以
,从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2148.jpg?sign=1739304033-5QoTrBKeHbOIkuMdWWjCNypG3vBFKpwr-0-3e802629986b7ba9721980bf847e94a8)
1.求在x=0处的幂级数展开式及收敛半径.[中南大学研]
解:由,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2151.jpg?sign=1739304033-ctfzGnaJEzXjEQo2qdiFwfs5r2jtlMvv-0-614ab31a89aac104baba928405420f67)
易知其收敛半径.
1.证明:当时,
在(-∞,+∞)上一致收敛.[东北大学研]
证明:易知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2155.jpg?sign=1739304033-JO6mO8ILUbsIee9gZxTIhXZeEA2NpMOd-0-9c1b9ae42b8ef2681e46d1b43fbea445)
令,由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2157.jpg?sign=1739304033-hlWoV206NmwQZUdAJRXN6XeHuM7izVAv-0-aa69d75fd0b6e31125d3a7e679801785)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2158.jpg?sign=1739304033-wZfBw0UjgsM3uvbe4OHexZyfH7L2tHhm-0-f9f5d3c55ac6be1ad34a644edd6423c6)
故
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2159.jpg?sign=1739304033-4viJgnMJZOC7VmGRFNBimtRQ50iPjiwO-0-6fd0f25c271420eaaece6f73b1565829)
所以在(-∞,+∞)上一致收敛.
1.设f(x)在区间[a,b]上连续,f(x)>0.证明:函数列在[a,b]上一致收敛于1.[华东师范大学研]
证明:因为f(x)在区间[a,b]上连续,所以存在,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2163.jpg?sign=1739304033-y06K643KVBzrMQX6W9yZmiMeLXrDGw9J-0-b3664459a7f9399d851d9653a692b855)
,从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2164.jpg?sign=1739304033-EGbu4fKJtRwQXpCOhEG5rN9UCj4Jvq2N-0-62727c538a5906487b92f070c4021cff)
因为,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2167.jpg?sign=1739304033-AupKbjCn7yh1IwaEsznBGMrKSP6YuJIh-0-4b60018298d0299c2f19de4ec215b842)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2168.jpg?sign=1739304033-QCIfqZLLjWQkjo54HsRmGO6kvYeBTW8q-0-c61bbf6674728488603b88bc4e19b0e4)
即函数列在[a,b]上一致收敛于1.
1.设函数un(x)在闭区间[a,b]上连续(n=1,2,3,…),级数在开区间(a,b)内一致收敛.证明:函数
在闭区间[a,b]上一致连续.[北京交通大学2006研、深圳大学2006研]
证明:由于级数在开区间(a,b)内一致收敛,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2174.jpg?sign=1739304033-aJGXxugA29dFD5OAHvHO6Zv03WDrnkYm-0-af7df8638bb55063dda351f1ba0d1554)
由于函数在闭区间[a,b]上连续(n=1,2,3,…),在上式中分别令
有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2177.jpg?sign=1739304033-EE7w2e6SE4hYO0crAyCFcvn25w22Xd8B-0-a259e6da8dc03c04f8dd0ecb859593b0)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2178.jpg?sign=1739304033-u7fhghnIce4hYjcU40m35unZDdk7UTyG-0-8cbc5cc347bdb531c1ceccb2997a3652)
即在闭区间[a,b]上一致收敛.故函数
在闭区间[a,b]上一致连续.
1.设函数f(x)在(-∞,+∞)上有任意阶导数,且导数函数列在(-∞,+∞)上一致收敛于
.证明:
[南开大学2006研]
证明:由于在(-∞,+∞)上一致收敛于φ(x),从而
即
在(-∞,+∞)上一致收敛,由一致收敛函数列的可微性质得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2187.jpg?sign=1739304033-gAvS03mp0qQBYqArKwevyFJNhNlwnWn9-0-19700792930820902ae0a1303f0c5b7c)
于是.又因为φ(0)=1,所以C=1,故
1.设,计算积分
[江苏大学2006研]
解:由于,又
收敛,故由Weierstrass判别法知
在
(-∞,+∞)上一致收敛.从而由一致收敛函数项级数的可积性知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2195.jpg?sign=1739304033-DaCW33v2Y97ZQtoA3qTKD4SHHEfmALn2-0-febbc0b1a1a87d07e1c7d64b01ef4ec5)