![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1739302955-8zcujA3ICxYqBFhIvrtotraqJYfiIwN9-0-488cd2d9609b67fbb88a5a588928d800)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1739302955-iRbWP7jrpE3boxgupzsK21bouSPGN1ir-0-5af8bda83b25e97542118bef8b0aa71e)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1739302955-I2wsnl3YiiAJl221K2MCQo4ZT8XJpcOW-0-c654b9151a618758433ce0e170f463b7)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1739302955-Re9KK3clZMUTTA7rkxOKb8Fa9knsHeGk-0-7b73f9cd549b820ddf1fdbdd6b6e86fe)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1739302955-gz7w0nbLg4SL2dusB1b5Lwj55Himp4Wo-0-992fe2c09a9a1f21bd0281678881ce86)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1739302955-QviRVcNqne34IrboKaUwxzxUyRaWAYHl-0-04709fa58aeb0f2dbd3be159d64e8119)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1739302955-LCflhHRpQfWoOqxvfVUldd1Vqf8rdqR7-0-8a612d03e51063e694c823499dd8204e)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1739302955-kZjMgnDz8iArKqMPSrqPJPs2EXVTSSzy-0-f9b9dcecf981abc0f5b8873b1ec4426b)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1739302955-xIZ45ftTfjvANdor76rO97LgG5aSSnnO-0-40e4ecdeb854f0a3d378e586025657bb)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1739302955-l8hiv0Lgz8a7xcFiKmYPVQW2K85FOaIQ-0-ef7a8bd021edf12029c8978717f4f33c)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1739302955-EAJdX5U8VkkaG301acgTG8gXcoZjYH0J-0-1d37bb344b49b3ace94a9e5dc4d2a93d)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1739302955-FzSQznhwMNWGFTOD57KU789mfqYjBp2K-0-acacbbbdf77cf23dda649569e2c6b1d6)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1739302955-qTUNDuHj0UDXxkwXn9QTTGKAzjhG9GNn-0-d3dd3e4201504bafe56ed947c7fa172c)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1739302955-KC5h4xKRuogiPx7koYua6HTYmxLA2IYF-0-b7bf634b1c41511b724b9329497cfb45)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1739302955-z9fRaADneAWJ26siLQkjAQB8bTKaoVmu-0-30c15beb5a1ed650df81bd04dbcc1b02)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1739302955-MfhVJ1fx0rHg7AXqarxwvv6aEw2n6AW8-0-ab793cc7af8c271bee9db357dfa36590)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1739302955-ESjnFb6fjVzWMXgtFmzB86qlUiCzXSNQ-0-05d80ab29ad86465a5fb77b821e1e323)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1739302955-qzWY4AQzhRTR32gnNEOaHjIJJ9X2BX2u-0-5a64384ca8acf3564cdd228832e52af1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1739302955-KMhyxvTvfKeKygWE2VwTJJY3dd6tIGE4-0-28f1fb9b64c8b85635518df5c0a40b10)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1739302955-JsmnfU4e1S03L8jILnHQN3sJfBkcDu5r-0-512cb90a5d75f43fd244c97ac1a010c1)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1739302955-RwxYJtjZXo2OnVKI4aynJFuE2zhZPo2h-0-fe06f9fa3c5a5817bcabc1b32c038cae)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1739302955-RoOIVyseM3LJTYxfN4MdklVLO16Kk1em-0-a8b8e9a9150dee26332e6c63b972fa50)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1739302955-6VUH1jyqhPqhG2N77ThRbYn0i0yIJfnk-0-59299811487508079c2c4256bae2a15c)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1739302955-iWX4kt6302LLEBAKETcFI7cuERfyoIo3-0-dc3ff8970411de0385c7839494d03ed9)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1739302955-R8yCk05KQTbcIETcspUGYp6To4EV0CDo-0-6882971195e1cc9e517b8d8f9576bb76)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1739302955-LUr1UCRiEiuTXekNLFfNKTjjFzgJg14p-0-bfde7878c954e5291a6a235dd041a2ad)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1739302955-nb2E3ejly4UFX8ZkR2e4Q4bncdDyuh22-0-34719d41f9d4a6926688eaa00b410d68)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1739302955-4Ug9mrzEP1jYEldDXH4dnZOviEZcPWSZ-0-f64a4e7f1334cf5e88310738ebe3e000)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1739302955-mTEW6yaJaA7w4wLdcA199hyBQLBgfrEY-0-7bd2067996774699e0b3d1df6d01fe8c)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1739302955-aetT563OPQDbtlZ14BssWhE6Mhuw5Gim-0-a00efe054f152be2b8dc4196d4a763da)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1739302955-24UyP7E250lrf4oeIi83TlRvgnEKRFj2-0-4c0b3f85b7ee387c8a104fe56bd38929)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1739302955-ilvFRqQ7N28VRCWJGnSj7uvs7Gp0V5Et-0-ee6b3cce45a0eb82b837e24d24d618a2)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1739302955-HMBhKQTo2eLWQUL4kY3xVt0jDKHpHwcB-0-37c9c3665bf6293f34cd9ed428839eab)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1739302955-GjEWd2JBTX61mAuUYcmVnP3BGNv3oqWQ-0-463e5fdda070f3ad2d81857f4f4ff03d)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1739302955-VzfjwDUVq57XKcwhxNeP4zdhfuzDw0MV-0-dff13bb3756f028db58366d60fc354d4)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)